What Is Old Becomes New

Finding classic vulnerabilities in GraphQL APIs

Tech Talk May, 2025

N .
Aleksa Zatezalo, Security Engineer, Praetorian @ praetorlan



Presentation Overview

In an ever changing landscape learning to apply the fundamentals everywhere takes you a long way.

Q" A Introduction to GraphQL

& Setting up a test environment
G Classic Vulnerability Refresher
9 Case Study

& Introduction to GrapeQL

3 .
Copyright 2024 Praetorian, Inc All Rights Reserved. @ praetonan



An Introduction To GraphQL

How do GraphQL APIs differ from traditional APIs?

® A querylanguage for APIs developed by Meta

@ Provides a single endpoint that handles all data operations R AR
® Allows clients to request exactly the data they need (%
@® Two primary operation types: queries and mutations | Client

{ PLAYERS, TEAMS, MATCHES }

® Strongly typed schema known by client and server

P .
Copyright 2024 Praetorian, Inc All Rights Reserved. @ praetonan



An Introduction To GraphQL

How do GraphQL APIs differ from traditional APIs?

GraphQL Execution Engine

o .
Copyright 2024 Praetorian, Inc All Rights Reserved. @ praetonan



Setting Up A Test Environment

How do we begin testing GraphQL applications? What tools and techniques do we need?

Q" A Introduction to GraphQL

" Setting up a test environment
9 Classic Vulnerability Refresher
9 Case Study

& Introduction to GrapeQL

o o
Copyright 2024 Praetorian, Inc All Rights Reserved. @ praetorian



Setting Up A Test Environment

Setting up a GraphQL testing environment is surprisingly straightforward. All you

need is Burpsuite, Python, a few select tools like GrapeQL, and a Docker container to

host the Damn vulnerable GraphQL application.

4, Burp Suite

® Any GraphQL api can be tested
entirely with BurpSuite

® A number of plugins, like InQ,
exist to assist with testing

® GraphQL Voyager can be used
alongside Burp Suite to help
visualize schemas

GrapeQL

® Anautomated testing tool that
analyzes schemas and tests for a
number of common “old-school”
vulnerabilities such as CSRF,
command injection, SQLi, and
DOS.

Copyright 2024 Praetorian, Inc All Rights Reserved.

‘J Python

® Many automated GraphQL
testing scripts have been made
using python

® Sending and analyzing web
requests is also quite easy

& Docker

@® Will host a virtualized container
with the Damn Vulnerable
GraphQL application (DVGA).

@ praetorian



Classic Vulnerability Refresher

How do common vulnerabilities differ in GraphQL applications? Is there anything different we need to look for?

Q" A Introduction to GraphQL

Z Setting up a test environment

o= Classic Vulnerability Refresher
9 Case Study

& Introduction to GrapeQL

o o
Copyright 2024 Praetorian, Inc All Rights Reserved. @ praetorian



Classic Vulnerability Refresher

Testing for these classic vulnerabilities does not deviate too far from normal API tests.

Q SQL Injection

® Look for variables like filter in
queries and mutations

® Databases like postgres are
commonly used

Copyright 2024 Praetorian, Inc All Rights Reserved.

Q Authentication Bypass

® Closely analyze parameters like
username & password, and if
they are compared against a
cookie during authentication

@ praetorian



Case Study

A GraphQL API with a privilege escalation vulnerability and SQLi was found on a client engagment.

Q" A Introduction to GraphQL

& Setting up a test environment
G Classic Vulnerability Refresher
o Case Study

& Introduction to GrapeQL

o o
Copyright 2024 Praetorian, Inc All Rights Reserved. @ praetorian



Case Study: Privilege Escalation

Identified a medium severity privilege escalation vulnerability that evaluated 04
permissions against a username and a username only. - e = d
|
Identified an admin panel on the target website I
01 Anadmin panel was present on a target website. After proxying through
burp I saw that one GraphQL request was used to evaluate access. 03 i
Collect a list of valid usernames -

02 Scraped internal company boards to generate a list of potential
usernames. The username pattern was easy to guess.

Set up an Burp Intruder attack
03 Used the username to iterate through all potential usernames to see

which one would grant me access. All requests responded with an HTTP 02
200 so I had to look for a response that was uncharacteristically large. -———

Privilege Escalation :
04 I could access the websites admin panel and edit application metadata. |
01 ;
- em = o
I
I

o o
Copyright 2024 Praetorian, Inc All Rights Reserved. @ praetorian



Case Study: Privilege Escalation

Identified an admin panel on the target website
01

Admin panel

Admin panel for editing the app metadata

v Organization ¥ Run frequency

User does not have access to this page User does not have access to this page

® Access Denied ® Access Denied

Developer teams Accounting teams
Automation tools Ledger impacts
Launch dates Process output type
Financial year impact Frisco teams

Frisco actions Frisco Environments

Export all apps to a sheet

Copyright 2024 Praetorian, Inc All Rights Reserved.

¥ Use case type

User does not have access to this page

® Access Denied

Input source types

Use case regions

Financial relevance

Frisco businesses

Frisco File types

praetorian



Case Study: Privilege Escalation

Collect a list of valid usernames
(0)

Request

cquery Myguery {

1 "zatezala"

d: "ABC ADMIN"

iz _authorized
optional data

Copyright 2024 Praetorian, Inc All Rights Reserved. praet@rian




Case Study: Privilege Escalation

Set up an Burp Intruder attack
03

@ Choose an attack type

@ Payload positions
Configure the positions where payloads will be inserted, they can be added into the target as well as the base request.
Add s

Clear &

Auto §

Refresh
_AIZII-III-I Y
L W

@ praetorian

Copyright 2024 Praetorian, Inc All Rights Reserved.



Case Study: Privilege Escalation

04

Copyright 2024 Praetorian, Inc All Rights Reserved.

Privilege Escalation

¥ Organization

rtation

v Run frequency

Ad-hoc/On-Demand

Annually

Bi-Annually

| Multiple times a day

| Quarterly

Working Day 1

Jorking Day 10
Vorking Day 2
ng 0oy 3
Vorking Day 4
rking Day 5
Vorking Day &

| Working Day 7

¥ Use case type

Audit support

shboard vizualizatio

Intercompany

ncilliation

rting

j praetorian



Case Study: SQL Injection

Identified a blind SQL injection vulnerability that allowed us to extract data.

Identified a suspicious request
01 Function called getAppsV2 that contained a filter parameter.

Generated a postgres error
02 Used atraditional ‘ in the filter parameter to generate a SQL error.

Identified it as a blind boolean SQLi

03 Icould use sleep statements to verify if a query was true or false. A series
of requests could then be used to extract data.

Data extraction with python
04 SQLmap could be used against GraphQL APIs, in theory. In this case it

could not pick up the vulnerability. A custom python script was used to
extract data.

Copyright 2024 Praetorian, Inc All Rights Reserved.

01

02

03

04

@ praetorian



Case Study: SQL Injection

Generated a postgres error

{2 =00 OE

02

pplicati ony J¥on ;charxet=UTF-&

vk
ue, Z1 May 2024 Z0:40: 34 GMT

'imwal id input syntax for type higint: . LR

Copyright 2024 Praetorian, Inc All Rights Reserved. Qf’g@%@fian




Case Study: SQL Injection

Identified it as a blind boolean SQLi
03

Request

Query

mexy

_ ids: [], apps: []. _ "!;8LLECT cawxe when (SLLECT carzent settingi'is wyuperuser'))='on' then pg sleepili) end;-- -"} filtecs: [])

Response

HITF/Z 200 (K

Copyright 2024 Praetorian, Inc All Rights Reserved. (@) praetorian



Introduction to GrapeQL

In an ever changing landscape learning to apply the fundamentals everywhere takes you a long way.

Q" A Introduction to GraphQL

& Setting up a test environment
G Classic Vulnerability Refresher
9 Case Study

o Introduction to GrapeQL

3 .
Copyright 2024 Praetorian, Inc All Rights Reserved. @ praetonan



Introduction to GrapeQL

Lots of decentralized scripts that caught low hanging fruit. Could the whole be greater than the

sum of its parts?

“Q: Centralization

Many different tools,
combined can become
greater than the sum of their
parts. Examples include:

® Burp's InQL plugin
® graphwOOf
® graph-COP

Q Workflow

A simple workflow could be
established by combining
various scripts:

1. Obtaining the GraphQL
schema

2. Fingerprinting the

underlying server

Testing for CSRF

4. Testing for command
injection and SQLi

5. Stress testing with
circular queries and
other DOS requests

2

Copyright 2024 Praetorian, Inc All Rights Reserved.

Q GrapeQl

GrapeQL combines all
aforementioned scripts and
functionally as outlined in the
workflow to produce a report
containing all identified
vulnerabilities.

@ praetorian



Introduction to GrapeQL

C:\Users\zabum\Documents\code\grapeql>grapeql ——api http://127.0.0.1:5013/graphql —--proxy 127.0.0.1:8080 —--report report.md —--dos

EXAMPLE NOTIFICATIONS:

[+] Good news is printed like this.
[!] Warnings are printed like this.
[-] Errors are printed like this.
[!] Logs are printed like this.

Copyright 2024 Praetorian, Inc All Rights Reserved.

@ praetorian



Introduction

[+]
[+]
[+]
[+]
[+]

[+]
[+]
[+]

to GrapeQL

Endpoint set: http://127.0.0.1:5013/graphql
Proxy configured: http://127.0.0.1:8080
Endpoint set: http://127.0.0.1:5013/graphql
Proxy configured: http://127.0.0.1:8080

Introspection successful

Identified GraphQL engine: Graphene
Endpoint set: http://127.0.0.1:5013/graphql
Proxy configured: http://127.0.0.1:8080

Introspection successful

Testing for Field Suggestions...

LOW: Field Suggestions Enabled

Found issue: Field Suggestions Enabled
Testing for GET-based Queries...

GET-based Queries test passed
Testing for GET-based Mutations...

GET-based Mutations test passed
Testing for URL-encoded POST...

MEDIUM: URL-encoded POST Queries Enabled (Possible CSRF)
Found issue: URL-encoded POST Queries Enabled (Possible CSRF)

Copyright 2024 Praetorian, Inc All Rights Reserved.

@ praetorian



Introduction to GrapeQL

[+] Report written to report.md

Severity Breakdown:
CRITICAL: 2

HIGH: 5

MEDIUM: 2
LOW: 2
INFO: 1

Total: 12 findings

[1] Critical/High Severity Findings:

CRITICAL:
CRITICAL:

HIGH:

HIGH:
HIGH:
HIGH:
HIGH:

DoS
DoS
DoS
DoS
DoS

SQL Injection in pastes.filter - http://127.0.0.1:5013/graphql
Command Injection in systemDiagnostics.cmd - http://127.0.0.1:5013/graphql

Vulnerability:
Vulnerability:
Vulnerability:
Vulnerability:
Vulnerability:

Circular Query DoS - http://127.0.0.1:5013/graphql
Field Duplication DoS - http://127.0.0.1:5013/graphql
Deeply Nested Query DoS - http://127.0.0.1:5013/graphql
Fragment Bomb DoS - http://127.0.0.1:5013/graphql

Array Batching Attack - http://127.0.0.1:5013/graphql

o 0
Copyright 2024 Praetorian, Inc All Rights Reserved. @ praetorian



	What Is Old Becomes New
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

