
Threat Modeling
Meets

Model Training
Web App Security Skills for AI
Breanne Boland, Product Security Engineer, Gusto

● I live in Brooklyn (previously Oakland and Seattle)
● I do product security things
● I write novels and make stained glass pieces
● I herd tend cats
● I give advice about secure implementations of AI

(among other tasks at work)

whoami

The current(ish) state of AI

AI
The secret sauce!

On everything!
So just… sauce!

What it does well
Identifying patterns

Accessibility, sometimes

So new, so special?
Special problems, but

familiar ones too

AI output
You cannot innately

trust it! Not ever!

Problems

Humans made AI

AI on AI on AI helps
No single measure

fixes everything

So AI has human
problems: bias,

inaccuracies, etc.

Vocabulary lesson

■ AI (artificial intelligence) vs. LLM (large language models)
■ Model and model training
■ Fine tuning
■ RAG (retrieval-augmented generation)
■ Prompts (of engineering and injection fame)
■ Hugging Face

Web application
security concepts that

apply to AI too
This is the longest part
of the talk! For reasons!

XSS! And other “please don’t put code
there” issues

● It’s always DNS XSS
● Do user queries get added to the DOM?
● Does input get stored? (It generally should in some form.)
● A lot of the answer: good old sanitization, escaping, and encoding

○ Works on text added to the DOM and stored text too!
○ Add it to input and output! Spare no text!

● Are you really sure the LLM won’t include code in responses? Ever?
○ Keep asking!

Authn, authz, and all things
access control

● Spoiler: access control is very very hard with AI (like it’s easy normally
😭)

● Who’s allowed to access your AI feature? Who can run up your bill?
● What’s your AI feature allowed to access? How is it controlled?

○ It’s… complicated. Best option: layer methods, like ABAC, prompt
elements, user context

● Who is your AI feature acting as when it accesses resources?

State-changing operations

● One way to keep AI on the desired path is by only allowing it access
to a narrow slice of API endpoints

● Another is confining it to the current user’s context
● Human verification for state-changing operations
● Just directing the user to the page needed to do what they want

Data (of course)

Only provide it what it needs. It can’t leak what you don’t give it.

● One option: use prompt engineering to try to keep certain data from
being submitted or stored.

● If sensitive data is part of the training data, without several layers of
guardrails, it’s always possible that it will leak what you provide.

Without guardrails, testing, and other measures, there is no way to
ensure that what’s put into an LLM will not come out

✨There is no
guaranteed way to

ensure that what’s put
into a model won’t come

out✨

Data (of course)

Only provide it what it needs. It can’t leak what you don’t give it.

● One option: use prompt engineering to try to keep certain data from
being submitted or stored.

● If sensitive data is part of the training data, without several layers of
guardrails, it’s always possible that it will leak what you provide.

Without guardrails, testing, and other measures, there is no way to
ensure that what’s put into an LLM will not come out

Users will always put data you don’t expect into places you don’t want or
expect it to be, so be ready!

Where does your LLM live?

● If you can, host the model yourself (not always possible, though)
● If you must go third party (common, alas), make sure the vendor is

reliable
● Third-party uptime problems happen

○ If your LLM isn’t reachable, it’s more difficult to roll back to a
previous version (because they may not be comparable) or to
enact another workaround. Do some disaster planning.

● Wherever it lives: if your company wants to use AI, they need to fund
the resources to review, secure, and maintain it.

Scary yet alluring free software

● Traditional software libraries can seem opaque, but LLMs go further
● Helpful: Hugging Face model cards, ML-BOMs
● You have to ask questions, persist, and find out everything you can
● And still… keep an eye on the news. Things happen.
● It’s a good idea to cultivate some light red-teaming skills to give

things a poke if you don’t have dedicated resources

What are
concerns are

particular to AI?
(Notice I didn’t say unique)

Prompt injection

● Good old “ignore all previous instructions and…” (SQLi of AI)
● This is a really big field of study so if you’re interested in it, dig in
● Some types: direct, indirect, pretext, prompt leak

○ Sometimes, the more types you layer, the more success the attack
● One way to prevent: include a domain of expertise in your prompt,

tell the LLM to ignore any questions outside of that
● Layered defenses are your best approach

Hallucinations, or: BEING WRONG

● With terms like this, ask who invented it and what their angle was
● People often react in response to the way you act when delivering

the news
● “Hallucination” has a bit of whimsy to it. I don’t like using it when

warning about inaccurate, unhelpful, or fully dangerous output from
LLMs.

● Say it with me: BEING WRONG

Is it a hallucination, or is your system
providing unreliable and potentially

dangerous output to unknowing users?

Is it BEING WRONG?

Opaque training data and the perils of fixing it

● True for all models, even ones you fine tuned
● Using an existing model trained by someone else? It’s full of mysteries
● No RAG? Answers might get stale
● Yes RAG? More uncertainty, more risks
● Result: we have to assume all LLM output is malicious, because it might be
● All sorts of stuff might be lurking in there :(sorry

https://www.theatlantic.com/technology/archive/2025/03/search-libgen-data-set/682094, retrieved 4/1/2025

https://www.theatlantic.com/technology/archive/2025/03/search-libgen-data-set/682094/

Unreliable output, or: an API would never*
Tests on tests on tests

● One approach: write a unit test for every problem you’ve fixed, remove once they
become obsolete

● AI can write a bunch for you, but the human has to prune and polish
● Your model and prompt should result in close focus, so your rules and tests

should be focused too
● You have to refine your guardrails too. There are existing prompts or rules to

start from, but you can’t just plop it on. The problem and solution both require
nuance.

*Well, not like that

Third-party LLMs learning from your users

● Most LLM providers scaled for business use offer zero-retention
endpoints and other options to keep their products from training on
your data or that of your customers

● You must select these options, particularly if your company handles
legally protected data

● Even if you don’t: do right by your users and protect them.

Moving on up: new models

● It’s more complicated than changing API versions
● New models can work completely differently
● Time for: tests on tests on tests!
● Your fine tuning may also need to adapt
● But if you don’t update models periodically and just keep fine tuning,

performance suffers. Good luck!

One approach: A/B test with the new model, with a slow rollout, or just
keep the old model available in case something goes awry with your
cutover

What web
application

security concepts
don’t apply?

Broadly… none.

A security issue is a security issue, and we already have tools that take us much
of the way toward a thorough assessment for risk in new territory.

Like…

The LLM top ten
Keep in mind the previous risks, and…

● Supply chain risks (we know these)
● Data and model poisoning (sounds a lot like injection, stored XSS)
● Improper output handling (more data spoiling)
● Excessive agency (sounds like authz and access control had an unholy child)
● System prompt leakage (sensitive data, anyone?)
● Vector and embedding weaknesses (leaks and data poisoning but with RAG)
● Misinformation (data, wrekt)
● Unbounded consumption (broken authentication, insecure design)

Takeaways
● Security practitioners have to stay on top of the tech that our engineering

cousins want to use.
● LLMs are just technology, and we understand technology. Secure it like

everything else.
● If your company wants to use AI, they need to fund the resources to review,

secure, and maintain it.
● Thorough, consistent threat modeling gets you 80 percent of the way there.
● Ground yourself with a hobby. Tangible things are an antidote to hype.

■ OWASP Top Ten, Original Recipe
■ OWASP LLM Top Ten
■ The Developer's Playbook for Large Language Model Security by

Steve Wilson
■ Mystery AI Hype Theater 3000 Podcast
■ Trail of Bits posts
■ Jason Haddix’s AI red teaming class:

https://www.arcanum-sec.com
■ Manicode’s secure AI education
■ Five million breathless hype pieces published every week, some of

which are even written by people

Resources

https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://www.arcanum-sec.com/
https://manicode.com/

CREDITS: This presentation template was created
by Slidesgo, including icons by Flaticon, and

infographics & images by Freepik

Thanks!
Blog version is at breanneboland.com

@toxoplasmosis@mastodon.social

Thank you thank you thank you 💖

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

