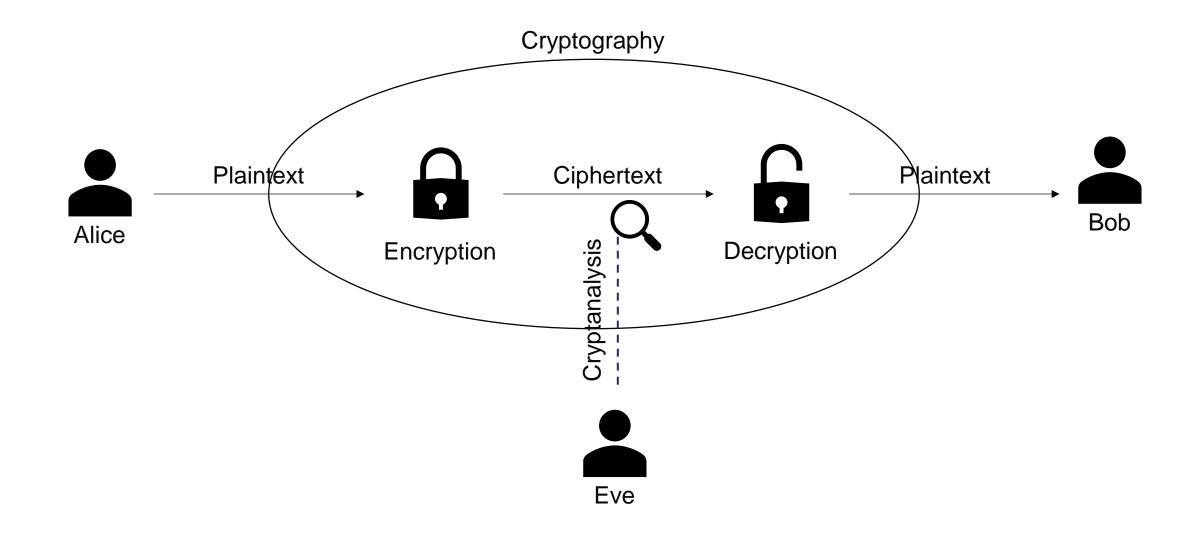


From Quantum Threats to Quantum Shields

A comprehensive guide to Post-Quantum Cryptography

Panagiotis (Panos) Vlachos
PhD Researcher CSIT, QUB

Outline


- 1. Conventional cryptography
- 2. Quantum Computing & Quantum Threat
- 3. Post-Quantum Cryptography Responding to the Quantum Threat
- 4. Post-Quantum Cryptography Latest advancements
- 5. Applications of PQC

Conventional Cryptography

Basic Terms

- **Cryptography** is the practice and science of securing Confidentiality, Integrity & Authenticity of information, by transforming it into an unreadable format.
- Plain-text is human readable text / message in its original format.
- Cipher-text is encrypted text that has been transformed using a cipher or encryption algorithm
- Cryptanalysis is the science of analyzing and breaking cryptographic codes and ciphers.
- Post-Quantum/Quantum-Resistant Cryptography (PQC) cryptographic methods & algorithms that remain secure, even against quantum attacks, while functioning effectively with classical computers.

Cryptography

Symmetric & Asymmetric Cryptography

Symmetric Cryptography

- Same key for encryption & decryption
- Algorithms that transform plain to ciphertext using a secret key
- Keeping the secret key secret

Cryptanalysis

- Brute-force
- Attacks aimed at the cipher

Asymmetric Cryptography

- Key pair (public, private)
- Mathematical Foundation
 - Large-number factorization (RSA)
 - Discrete logarithm problem (DH, ECC)
- Computational Difficulty

Cryptanalysis

- Mathematical attacks
- Quantum attacks

Quantum Computing

Quantum Computing & Quantum Threat

Traditional Computing

- Bit {0,1}
- Single path

Quantum Computing

- Qubit {0,1, both 0 and 1 simultaneously (superposition)}
- Entanglement "information telepathy"
- Multiple paths

"Quantum Computers are not faster – just weirder"

— Prof. Martin Albrecht

Impact on current cryptographic systems

Shor's Algorithm

- Efficient computations on quantum machines
- Large-number factorization & discrete logarithms in polynomial time
- Targets asymmetric cryptography (RSA, ECC, DSA, ...)

Grover's Algorithm

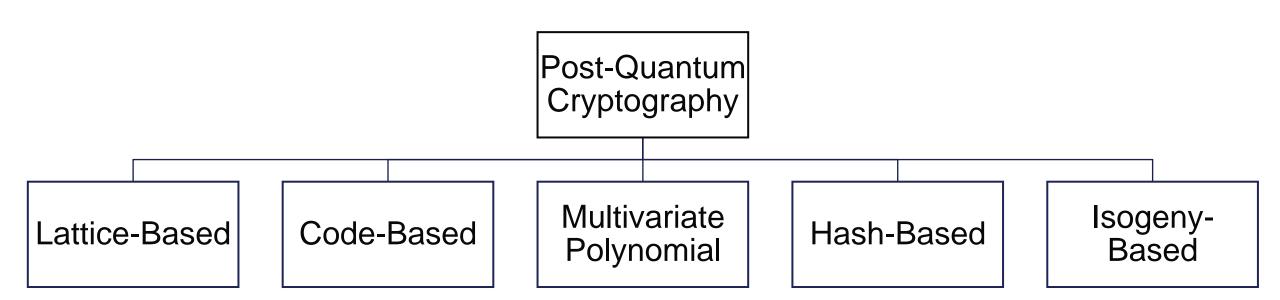
- Efficient search with quantum machines
- Reduces the time complexity of brute-force attacks
- Targets symmetric cryptography (AES, SHA, ...)

What can we do?

Symmetric Cryptography

- Grover's algorithm, halves the security level
 - 128-bit → 64-bit security against Grover's attacks

Doubling the key length

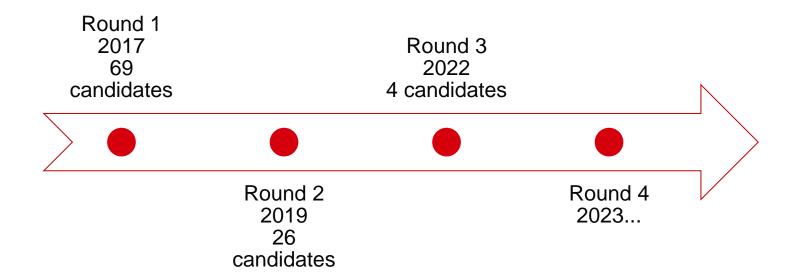

 Impacts on computational load, memory requirements, latency, energy consumption

Asymmetric Cryptography

- Shor's algorithm attacks the underlying mathematical problems
- No simple solution...

Post-Quantum Cryptography (PQC)

PQC Families



PQC Standardisation Process

NIST Standardization Process

National Institute of Standards and Technology (NIST) Standardization process

- 1. Algorithm submissions
- 2. Evaluation of submitted algorithms
- 3. Selection for standardization

Standardization Process Rounds

Algorithm Name	Cryptographic Family	Purpose	Additional Notes
CRYSTALS-KYBER	Lattice-Based	PKE/KEM	<u>FIPS-203</u>
CRYSTALS-Dilithium	Lattice-Based	Signatures	<u>FIPS-204</u>
SPHINCS+	Hash-Based	Signatures	<u>FIPS-205</u>
FALCON	Lattice-Based	Signatures	Draft FIPS-206 TBA
HQC	Code-Based	PKE/KEM	Selected for standardization (11/03/2025)
Classic McEliece	Code-Based	PKE/KEM	Long-standing security record
BIKE	Code-Based	PKE/KEM	Error-correcting codes
SIKE	Isogeny-Based	PKE/KEM	Proven insecure in 2022; included in the 4 th round for academic visibility

Round 3

Round 4

Current Status - Selected Algorithms

Algorithm Name	Cryptographic Family	Purpose	Additional Notes
CRYSTALS-KYBER	Lattice-Based	PKE/KEM	<u>FIPS-203</u>
CRYSTALS-Dilithium	Lattice-Based	Signatures	<u>FIPS-204</u>
SPHINCS+	Hash-Based	Signatures	<u>FIPS-205</u>
FALCON	Lattice-Based	Signatures	Draft FIPS-206 TBA
HQC	Code-Based	PKE/KEM	Selected for standardization (11/03/2025)
Classic McEliece	Code-Based	PKE/KEM	Long-standing security record
BIKE	Code-Based	PKE/KEM	Error-correcting codes
SIKE	Isogeny-Based	PKE/KEM	Proven insecure in 2022; included in the 4 th round for academic visibility

Standardised

Selected for standardization

Under evaluation

Migrating to PQC

Global Policy Landscape

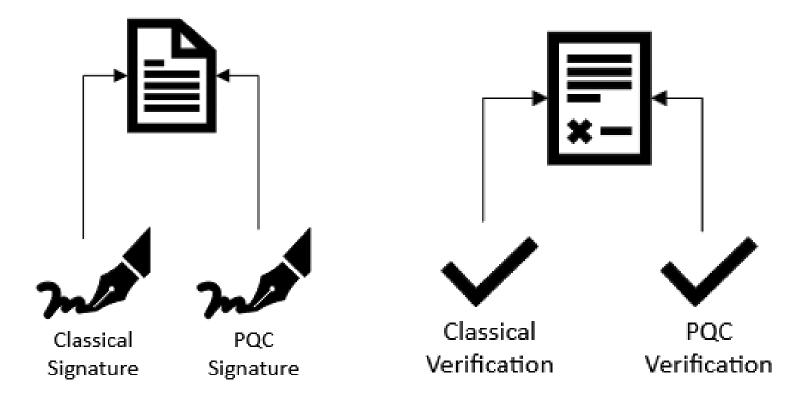
• USA

- NIST Standardization Process Algorithms vetted to protect against quantum threats.
- Presidential Memorandum (2022) US Federal Agencies to adopt PQC by 2030 (NASA, Department of Defense)

Australia

ACSC (Australian Cyber Security Centre) – phasing out legacy cryptosystems by 2030

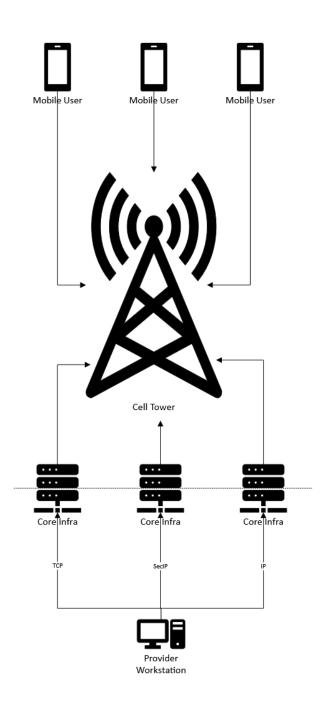
Europe


- **ENISA** (European Union Agency for Cybersecurity) collaborating with the **European Commission** to guide PQC implementation across member states.
- UK's NCSC (National Cyber Security Centre) <u>full migration</u> to PQC by 2035.

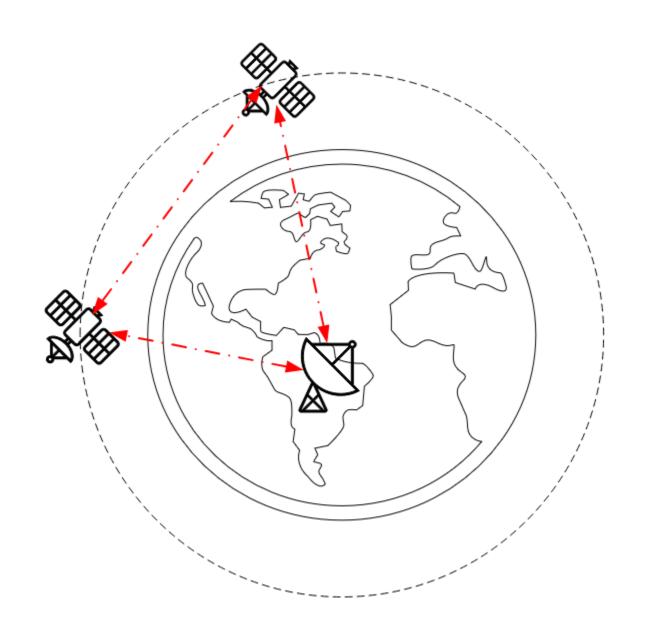
Asia

- Japan's CRYPTREC Guidelines advisory body for PQC transition recommendations for the next years, includes banking & public services
- South Korea's roadmap for PQC adoption, targets pilot implementations by 2025, focus on areas like smart cities, fintech and autonomous vehicles.
 KPQC research group.

Hybrid PQC


- PoC vs Production
- Conventional & Post-quantum → Hybrid implementation
 - Dual Protection
 - Gradual transition
 - Interoperability

Applications of PQC


Areas of application

- Emerging Technologies 6G
 - Previous infrastructure
 - Identity Concealment
 - Hybrid approach
 - Synergies

Areas of application

- Space Systems
 - Symmetric Cryptography
 - Future Challenges:
 - Satellite Constellations
 - Mesh networks
 - Decade-long lifespan
 - Safety & Security

Takeaways

Takeaways

- High level understanding of Quantum Threat & PQC
- Monitor advancements in both areas & stay curious
- Keep track of what you're using

Panagiotis (Panos) Vlachos

pvlachos01@qub.ac.uk