
Developer 
Centered 
Security
Olgierd Pieczul

Security Architecture
Oracle Cloud Infrastructure



Agenda, layers

Usable security

Developers, APIs

Myths and 
changes

Real-life
examples

Best
practices



Usable Security Primer
The Good, the Bad and the Ugly



BadUgly



System in theory



System in practice



Good



Summary
• Users are part of the system
• System design
• Secure defaults
• Not involving if possible
• Clear and transparent 

information



Developer Centered Security
Developers are humans too



Development stack



Development stack



Who are developers?
And what do they do?



Accidental
Developers
Source: O’Reilly Media



Accidental 
Developers
Source: O’Reilly Media



Accidental 
Developers
Source: The Practical Dev



Accidental 
Developers
Source: The Practical Dev



Everyday 
developers

• Coding as a specialized skill
• Separate from the rest of 

the lifecycle

DEVELOPMENT

TEST

BUILD

PACKAGE

DEPLOYMENT

OPS



Everyday 
developers

It is all about coding now

DEVELOPMENT

TEST
DEVELOPMENT

BUILD
DEVELOPMENT

PACKAGE
DEVELOPMENT

DEPLOYMENT
DEVELOPMENT

OPS
DEVELOPMENT



Third-party 
components

• Component integration
• Effortless, fast, cheap
• Amount of:
• documentation
• settings
• options
• defaults



Third-party 
components
Direct and indirect usage



Third-party 
components
Source: The Practical Dev



Case study
Webhooks



Before webhooks



With webhooks



Setup

Create webhook
- Callback URL
- Scope

- Event type
- Other options



Webhooks in action 



Why webhooks?

• Service defines controls
• Consumer implements
• No direct service impact
• Study of 10 services

• API
• Documentation
• Code samples



Source address

• What this is for?
• Does it change?
• Poor mechanism
• Layers, proxies
• Shared infrastructure
• Multiple services



Source address 
with DNS

• How often?
• Integrated or manual?
• Plaintext

$ dig a +short service.com
213.25.234.34
213.25.234.39
213.25.234.82
213.25.234.85



TLS

• 20% recommend using TLS
• Examples in documentation 

often use ‘http’ URLs
• Sample code uses plaintext 

endpoints



TLS • 100% enforce TLS for incoming calls to APIs
• 0% enforce TLS for webhooks

Us Them



Authentication • 5 out of 10 authenticate outgoing calls
• 1 does ”secret URL”, 1 BasicAuth, 3 HMAC



Authentication: Secret URL

“As a best practice, provide a callback
URL that's not guessable and make sure 
you can easily change it.”

― Service documentation

https://consumer.net/callback/foobar99



Authentication: HMAC



HMAC confusion

“Service can optionally 
sign the webhook events 
it sends to your endpoints 
by including a signature in 
each event’s header.”

“For added security, 
webhooks sent to 
applications are signed so 
they can be verified as 
originating from Service 
and unaltered in transit.”



HMAC: keys, docs and samples

Key generation
• Just one service 

provides sample
• None generates the key 

for the consumer
• Docs with web UI and 

trivial key
• Reuse of API key 

Tools and code samples
• Missing HMAC verification
• Hardcoded key
• Testing tool that requires 

turning off authentication

No public key signatures



A Day in the Life



A Day in the Life



Best practices

Avoid lazy security controls
Explain risks clearly
Do not provide insecure options
Do not delegate security tasks
Production quality code samples
Isolated, transparent debugging

Guidance



Summary

• Humans are part of the system 
security

• Developers are new users 
• APIs, docs, samples are 

developer interfaces
• Poor developer interfaces tricks 

them into security bugs
• Solutions are out there and easy



Thank you!
Questions?


