
The Continued Evolution of 
Userland Linux Rootkits
Can’t stop, won’t stop (preloading)



whoami?

● Darren, @_darrenmartyn on the twitter.

● Security researcher.

● Doer of linux things.



What is LD_PRELOAD?

● Environmental variable interpreted by the dynamic linker.

● Tells it to preload a library ahead of loading other libraries.

● For the Windows folks: Changes the DLL search order to load something 
first.

● Allows changing execution behaviour at runtime by hooking/replacing 
functions



What is LD_PRELOAD (continued)

● Can be globally set using /etc/ld.so.preload

● Equivalent on OSX: DYLD_INSERT_LIBRARIES

● On Windows: AppInit_DLLs (broken though, causes everything to halt and 
catch fire).

● Most platforms have some way to tell the linker where to load from.



How does this relate to rootkits?

● We can replace functions at runtime.

● Modify the behaviour of programs.

● This allows us to hide things, or do sneaky shit in the background.

● Incredibly powerful technique for debugging as well :) 



Pro’s and Con’s of LD_PRELOAD rootkits

● Relatively stable across OS versions. 
(Userland ABI/API is pretty stable).

● No need to write a hundred #ifdef for 
different kernel versions.

● Not usually architecture specific hooking 
method.

● Relatively easy to write, easy to extend. 
● Can customise to target for APT points.
● Adding new hooks is just adding new 

functions. 

● Vulnerable to timing attacks.
● Vulnerable to static binaries.
● Need to compile on host, or have same 

library versions in dev/build environment.
● Vulnerable to “I didn’t hook that other 

function”.
● Trivial to find by forensic practitioners.
● Massive perf impact. (see: timing attacks).
● Vulnerable to `ldd` loops. 



How to write an LD_PRELOAD rootkit

● Identify a function you want/need to hook (strace helps here)

● Work out what you want to change about their behaviour (hide stuff?).

● Write the hook.

● Repeat. 



Example Time.



Most basic example: rand() hook - code



An example of hooking “rand()” - execution.



Adding conditions, allowing reality. 

● We don’t always want to return a broken random number, for example.

● Sometimes we want to allow calling the “real” function.

● The following contrived example can supply either a bugged or legit 
“rand()” depending on if an env-var is set. 



Another rand hook, with checks.



See? It works!



More conditions

● More usually, we have conditions on the output/input to a function.

● Our hooks act as I/O filters of sorts here.

● This readdir() example is a fine example of that, selectively hiding files with 
a certain string in their name. 



Hiding files by hooking readdir.



Hiding files.



A good time as any for a timing attack.

● The readdir() hook example makes a perfect example for a timing attack.

● The time it takes to do the string comparison and filtering means more 
stuff happens during the call.

● Using `time` we can show this easily.



Timing attacks (readdir example).



Implementing Local Backdoors

● Most common technique involves using an environmental variable as a 
trigger, and hooking setuid binaries.

● Have a function that spawns a root shell if an env-var is called.

● Call that function from every other hook in your rootkit (or from a 
constructor/destructor…).



Local setuid backdoor function…



Call it from other hooks (from Jynx2).



Elevating privileges using setuid binaries.



Remote Backdoors

● Hooking accept() (usually, source-port based. // jynx2
● Hooking PAM to backdoor SSH. // umbreon, Father
● Hooking write() and using it as a trigger. // h0mbre
● Port Knocking/Magic Packets // jynx
● Launching a bind or reverse shell when certain processes are called.
● Hot-swapping /etc/passwd or /etc/shadow at runtime
● Hot-swapping authorized_keys files at runtime…
● Use your imagination. Limitless potential.



Accept Hooks - Part 1 (hooking accept and passing off the socket)



Accept Hook Part 2

● Checks if the source port of the 
incoming connection is 
between a high and low port.

● If not, returns the sockfd.
● If it is… Forks and calls a 

confusingly named 
“backconnect” function.

● All this function does is dup2 
the sockfd and spawn a shell.

● Source: jynx2



Accept hooking in action.



● Hijack the pam_authenticate 
function.

● When user tries login, show a 
prompt.

● If the login password is our 
backdoor password, return true 
(bypass authentication).

● Otherwise, pass on to PAM to 
try actually authenticate.

● Removed from example: log 
creds to file. 

● Source: “Father” rootkit PR #9.
● https://github.com/mav8557/F

ather/

Backdooring PAM



Broken remote backdoors.

● I thought it would be funny to try find a way to find broken rootkit installs.

● Previously, I found a copy of lib__mdma in the wild using fancy googles.

● So I turn to Shodan, and put in an error message the linker spits out when it 
can’t LD_PRELOAD a library.

● This should detect missing/wrong architecture/etc rootkit installs…



Finding broken rootkits in the wild, the TERRAMASTER NAS story.



Finding broken rootkits in the wild, the TERRAMASTER NAS story.



Finding broken rootkits in the wild, the TERRAMASTER NAS story.



Finding broken rootkits in the wild, the TERRAMASTER NAS story.



Finding broken rootkits in the wild, the 
TERRAMASTER NAS story.

● https://www.trendmicro.com/en_ie/research/20/k/analysis-of-kinsing-mal
wares-use-of-rootkit.html

● https://www.sandflysecurity.com/blog/log4j-kinsing-linux-malware-in-the-
wild/

● TL;DR Kinsing were dropping a modified Beurk rootkit. 
● Which didn’t work on some hosts (eg: some NAS’s) and broke things, 

causing a fun error :)

https://www.trendmicro.com/en_ie/research/20/k/analysis-of-kinsing-malwares-use-of-rootkit.html
https://www.trendmicro.com/en_ie/research/20/k/analysis-of-kinsing-malwares-use-of-rootkit.html
https://www.sandflysecurity.com/blog/log4j-kinsing-linux-malware-in-the-wild/
https://www.sandflysecurity.com/blog/log4j-kinsing-linux-malware-in-the-wild/


Categorising Rootkits - Worksheet?

● What functions does the sample hook?
● Does it reuse code from any known rootkits? (eg: Jynx2?)
● What remote access method(s) does it implement?
● What self-protection methods does the rootkit seem to implement?
● Does it obfuscate strings? How? (eg: xor in Azazel)
● How does it decide what files/processes/etc to hide? Magic GID? Xattrs?
● We start with an excel spreadsheet. Oh yes.



“What functions does it hook?”

● Picked a bunch of example rootkits that source code was available for.

● For each, read source and made a list of every hook they implement.

● This took a very, very long time. I might even have missed the odd one. 

● The “vlany” rootkit took approximately a billion years to go through, but 
was nicely written. 



Code Reuse

● This is easy to spot. You can probably make simple FLIRT signatures YARA 
rules or similar to automagically detect code reuse.

● Eg: Inetzer’s “Code DNA” stuff uses this technique to cluster/bucket 
malware families.

● SUPER effective at reducing reversing workload. 



“What backdoor methods does it have?”

● What remote backdoor, if any?

● PAM hooks? Port knockers? Accept hooks? Something else?

● If its an accept() hook using SSL, it probably has a Jynx lineage.

● PAM backdoors are all similar, almost always magic password.



Remotely Detecting Remote Backdoors

● (assuming you have reverse engineered a sample)

● For accept hooks: scan network with samples source port, diff responses 
against random source port…

● For PAM backdoors: scan network for the magic login. 

● For port knockers: Spray knock seq at network, await shells.



Self-Protection Methods

● Some rootkits implement reinstall routines.

● If they detect an attempt to tamper with their files, they uninstall 
themselves and reinstall themselves.

● Usually using constructor/destructor hooks.

● Others just rely on hiding. 



String Obfuscation 

● Some rootkits don’t bother obfuscating strings at all.

● Some xor them (Azazel, etc), others use more complex methods. 

● Working out how to identify and unobfuscate automatically for entire 
classes (perhaps in an IDAPython script) will reduce workload.

● Usually they just obfuscate their configuration settings.



“Marking files to hide”

● 3 main variations of this - find them in any of the hooks.

● Magic strings to hide (eg: any filename with “hideme”).

● Any file made/owned by a magic GID.

● Using extended attributes to mark files as “hidden”.



Special Purpose Preload Rootkits ITW

● Most rootkits ITW are what I would classify as “General Purpose”.

● Bringing the whole kitchen sink to the party.

● Recently, however, more “limited scope” rootkits have been seen.

● Let us talk about “libcurl”



The libcurl rootkit

● Dropped as part of a cryptominer campaign.

● Discovered by Sandfly.

● “Evaded some Linux EDR” claims (yet to be seen - future work).

● Sole purpose: hide the crypto miner.



Hiding a crypto miner - libcurl

● Hides the miner process/files.

● Lies about CPU usage.

● Lies about system load.

● Idea is to make admin/admin tools not realize their CPU time is being 
used.



If only GPU’s were affordable this would be 
an issue

● https://github.com/nwork/jellyfish

● PoC rootkit using LD_PRELOAD to load code into GPU.

● Neat trick, but irrelevant as nobody can afford GPU’s ;) 

● Might become relevant again in future? 

https://github.com/nwork/jellyfish


References.

● https://www.linuxfordevices.com/tutorials/linux/hiding-files-in-linux-with-c
● https://securityboulevard.com/2020/10/not-so-random-using-ld_preload-t

o-hijack-the-rand-function/
● https://rjordaney.is/lectures/hooking_shared_lib/
● https://0xdf.gitlab.io/2019/11/26/htb-chainsaw-rootkit.html
● https://rafalcieslak.wordpress.com/2013/04/02/dynamic-linker-tricks-usin

g-ld_preload-to-cheat-inject-features-and-investigate-programs/
● https://jvns.ca/blog/2014/11/27/ld-preload-is-super-fun-and-easy

https://www.linuxfordevices.com/tutorials/linux/hiding-files-in-linux-with-c
https://securityboulevard.com/2020/10/not-so-random-using-ld_preload-to-hijack-the-rand-function/
https://securityboulevard.com/2020/10/not-so-random-using-ld_preload-to-hijack-the-rand-function/
https://rjordaney.is/lectures/hooking_shared_lib/
https://0xdf.gitlab.io/2019/11/26/htb-chainsaw-rootkit.html
https://rafalcieslak.wordpress.com/2013/04/02/dynamic-linker-tricks-using-ld_preload-to-cheat-inject-features-and-investigate-programs/
https://rafalcieslak.wordpress.com/2013/04/02/dynamic-linker-tricks-using-ld_preload-to-cheat-inject-features-and-investigate-programs/
https://jvns.ca/blog/2014/11/27/ld-preload-is-super-fun-and-easy/


More references

● https://liveoverflow.com/hooking-on-linux-with-ld_preload-pwn-adventure-
3/

● https://www.netspi.com/blog/technical/network-penetration-testing/funct
ion-hooking-part-i-hooking-shared-library-function-calls-in-linux/

● https://binaryresearch.github.io/2019/08/29/A-Technique-for-Hooking-Int
ernal-Functions-of-Dynamically-Linked-ELF-Binaries.html

● https://axcheron.github.io/playing-with-ld_preload/
● https://blog.gopheracademy.com/advent-2015/libc-hooking-go-shared-libr

aries/

https://liveoverflow.com/hooking-on-linux-with-ld_preload-pwn-adventure-3/
https://liveoverflow.com/hooking-on-linux-with-ld_preload-pwn-adventure-3/
https://www.netspi.com/blog/technical/network-penetration-testing/function-hooking-part-i-hooking-shared-library-function-calls-in-linux/
https://www.netspi.com/blog/technical/network-penetration-testing/function-hooking-part-i-hooking-shared-library-function-calls-in-linux/
https://binaryresearch.github.io/2019/08/29/A-Technique-for-Hooking-Internal-Functions-of-Dynamically-Linked-ELF-Binaries.html
https://binaryresearch.github.io/2019/08/29/A-Technique-for-Hooking-Internal-Functions-of-Dynamically-Linked-ELF-Binaries.html
https://axcheron.github.io/playing-with-ld_preload/
https://blog.gopheracademy.com/advent-2015/libc-hooking-go-shared-libraries/
https://blog.gopheracademy.com/advent-2015/libc-hooking-go-shared-libraries/

