Infrastructure-as-Code
(1aC) SAST: What’s that?

and why 1aC SAST?

Chaitra Bhat
Security Engineer @Yahoo!

yahoo/

ﬂaout Me

Chaitra Bhat

i Security Engineer, a Paranoid @Yahoo!
Long time developer, now a full time security engineer

e LinkedIn: https://www.linkedin.com/in/bhatchaitra/

e Twitter: @cyberbhatc

yahoo/

https://www.linkedin.com/in/bhatchaitra/
https://twitter.com/cyberbhatc

Let’s get some definitions out of the way

What is Infrastructure-as-Code (laC)?

Machine-readable definitions in the form of code or script to manage and
provision your infrastructure rather than doing it manually.

What is Static application security testing (SAST)?

SAST or static analysis is a testing methodology that analyzes source code to find
security vulnerabilities in the code.

Objectives

What?
What is IaC SAST? Some examples

Why?
Why does one need laC SAST tools?

Where?
Where does 1aC SAST fit in DevSecOps?

1aC all the way!

laC all the way!

So, we are FTL... what can possibly go wrong?

Chewie, are you sure
the laC template is
secure?

What do you mean
you forgot!? We are
doomed. Let’s get some
help.

huurh huuguughghg

What’s the solution?

Implement laC SAST in your
workflow you must. Hmmm...?

Outline

laC
Vulnerabilities in infrastructure

laC SAST

laC SAST tools

|laC SAST in DevSecOps
Conclusion

O b~ WN-=-

Outline

@)

d

laC (what is)
Infrastructure as Code

4 — h
DY (=)

TTTTTTT

Policies

-
..’ @ .HELM

} puppet m
ANSIBLE Terraform CHEF

| e [] |
©MES BEEeD

1aC (2)

Examples of IaC tools/services

Infrastructure Provisioning and Management Tools

N N + HELM
HashiCorp ﬁ: M
Terraform Pulumi ClewdFormation M'CVOSO Azure Dep%;/:)n%litcl\lllzuniger

Configuration Management Tools

N
wi
puppet SAL'IieiACK Q b= 4
ANSIBLE CHEF

1aC (3)

What are the benefits of 1aC?

Automation Repeatability
e

Automated workflows Code templates

integrated with the facilitate

CI/CD pipeline repeatability

Scalability

Easy resource
management and
provisioning
makes it scalable

@ These benefits can so easily turn into pitfalls!

Secure templates
resulting in secure
infrastructure

Outline

2. Vulnerabilities in infrastructure

Vulnerabilities in Infrastructure (1)

What are the potential vulnerabilities in the infrastructure?

Vulnerability Type

Network exposure

Unauthorised privilege escalations
Improper access control

Insufficient & Insecure logging

Misconfigurations in IaC can result in vulnerabilities in the infrastructure

Potential misconfigurations

Open security groups, publicly accessible cloud storage services,
public ssh access, databases that are accessible from the internet

Incorrectly stored secrets, containers running as root
Excessive permissions to your resources

Logging not enabled, logs not encrypted

Vulnerabilities in Infrastructure (2)

What causes these misconfigurations in 1aC?

Oversight by the engineer

New to laC

Complex laC configurations
Fast moving devops cycles

Gaps in testing

Dependency on pen-testing
Dependency on dynamic testing

@ It's that easy to cause vulnerabilities in your infrastructure!

Vulnerabilities in Infrastructure (4)

Industry reports on IaC misconfigurations (1)

How do you find out about security
issues in your configurations and laC?

Audit running Pen testing Manual code From investigating Automated Tools from our
environments scans incidents testing/Cl 1aC or public
after deployment cloud provider

Security issues found too
late in the workflow: As per
2021 IaC Research Report
from Synk, 45% of laC
misconfigurations were found
after deployment.

Post-deployment checks take
e > Tweek to discover a
security issue (if
discoverable)

e >T1day to fix those
issues

https://go.snyk.io/IaC-Security-Insights-Report-2021-dwn-typ.html?aliId=eyJpIjoiU3lIemZHYStxVTBGcU1BaSIsInQiOiJPa05IVmhtdWg0MzlpcnNEUGFpaEhBPT0ifQ%253D%253D

Vulnerabilities in Infrastructure (3)

Industry reports on laC misconfigurations (2)

Number of modules

Application Security

1AM

1,500 1M11%

Kubernetes
2.8%

Backup and Recovery

5.1%

1,000
Networking
10.8%

500

Logging

21-50 50+

1-5 6-10 1-20

Misconfiguration count

Public Terraform modules by number of misconfigurations (left);
types of misconfigurations and their percentages (right)

General Security

28.9%

Encryption

23%

l1aC key to Supply Chain
Protection: 2021 Cloud Threat
Report from Unit 42 of Palo
Alto Networks shows how
including various* Terraform
modules increases the
chances of misconfigurations
in laC.

Note: 1aC misconfigurations are
created by the cloud user, not
by CSPs or laC providers. Hence,
in the context of the shared
responsibility model, it is
important to secure the laC
templates.

* 4,055 Terraform templates and 38,480 Terraform files in popular open-source Terraform repositories were analysed

https://www.paloaltonetworks.com/prisma/unit42-cloud-threat-research-2h21
https://www.paloaltonetworks.com/prisma/unit42-cloud-threat-research-2h21

Vulnerabilities in Infrastructure (5)

Some examples of misconfigurations in 1aC from TerraGoat project

resource "aws_security_group" "web-node" { resource "aws_s3_bucket" "flowbucket" {

security group is open to the world in SSH port Bucket "${local.resource_prefix.value}-flowlogs"
name "${local.resource_prefix.value}-sg" force_destroy = true -

description = "${local.resource_prefix.value} Security Group"
vpc_id aws_vpc.web_vpc.id

tags = merge({
Name "${local.resource_prefix.value}-flowlogs"

ingress { : ;
Environment = local.resource_prefix.value

from_port = 80

to_port 80 }({ _
protocol = "tcp" git_commit

"d68d2897add9bc2203a5ed0632a5cdd8ff8cefho"
"terraform/aws/ec2.tf"

"2020-06-16 14:46:24"
"nimrodkor@gmail.com"

"nimrodkor"

"bridgecrewio"

"terragoat"
"f@58838a-ble@-4383-b965-7e06€987ffb1"

cidr_blocks = [git_file

"9.0.0.0/0"] git_last_modified_at
} git_last_modified_by
ingress { git_modifiers

from_port = 22 git_org

to_port 22 git_repo

protocol "tcp" yor_trace

cidr_blocks =

"9.0.0.0/0"]

LL I | N | | O [| O [B ||

Ex1: SSH port is open for all in the Security Group Ex2: S3 bucket is not encrypted at rest

https://github.com/bridgecrewio/terragoat

Vulnerabilities in Infrastructure (6)

Some more examples of misconfigurations in laC...

resource "aws_s3_bucket" "flowbucket" {
Bucket = "${local.resource_prefix.value}-flowlogs"
force_destroy = true

tags = merge({
Name "${local.resource_prefix.value}-flowlogs"
Environment = local.resource_prefix.value
g o
git_commit
git_file
git_last_modified_at
git_last_modified_by
git_modifiers
git_org
git_repo
yor_trace

"d68d2897add9bc2203a5ed0632a5cdd8ff8cefbo”
"terraform/aws/ec2.tf"

"2020-06-16 14:46:24"
"nimrodkor@gmail.com"

"nimrodkor"

"bridgecrewio"

"terragoat"
"f058838a-h1e0-4383-b965-7e06e987ffb1"

Ex3: Logging for access to S3 bucket not enabled

Have | scared you enough?

data aws_iam_policy_document "policy" {
statement {
actions = ["es:*"]
principals {
type "AWS"
identifiers = ["#"]

}

resources = ["x"]

}
}

Ex4: Fine grained access control for resources not defined

3.

laC SAST

1aC SAST (what iS)

{ } laC SAST Static analysis of

the laC files to find

security
Developers o . . .
B % Static analysis of laC files Flndlngs m ISCOHfIg u rat|0nS
in the code.

2

Feedback:

laC SAST (1)

Identifying vulnerabilities in 1aC using Checkov laC SAST tool as example

Check: CKV_AWS_24: "Ensure no security groups allow ingress from ©0.0.0.0:0 to port 22"
FAILED for resource: aws_security_group.web—node

File: /ec2.tf:77-115
Guide: https://docs.bridgecrew.io/docs/networking_l-port-security

Ex1: SSH port is open for all in the Security Group

Check: CKV_AWS_19: "Ensure all data stored in the S3 bucket is securely encrypted at rest"
FAILED for resource: aws_s3_bucket.flowbucket
File: /ec2.tf:271-288
Guide: https://docs.bridgecrew.io/docs/s3_1l4-data-encrypted-at-rest

Ex2: S3 bucket is not encrypted at rest

Not promoting any tool, just using them as examples.

https://www.checkov.io/

1aC SAST (2)

Identifying vulnerabilities in 1aC using Checkov as example

Check: CKV_AWS_18: "Ensure the S3 bucket has access logging enabled"
FAILED for resource: aws_s3_bucket.flowbucket

File: /ec2.tf:271-288
Guide: https://docs.bridgecrew.io/docs/s3_13-enable-logging

Ex3: Logging for access to S3 bucket not enabled

Check: CKV_AWS_111: "Ensure IAM policies does not allow write access without constraints”
FAILED for resource: aws_iam_policy_document.policy

File: /es.tf:29-38
Guide: https://docs.bridgecrew.io/docs/ensure-iam-policies-do-not-allow-write-access-without-constraint

Ex4: Fine grained access control for resources not defined

https://www.checkov.io/

LUKE SKYWALKER

ANAKIN / LUKE SKYWALKER
s

- DARTH V ADER
S S s—

O81-W AN KENOBI
e -

W AN KENOBI
' N B

Qui-GON JINN

Ki- Abi MUNDI
S0 TP —

MACE WINDU

JUIE A BILHEL o ol =

laC SAST tools

Topics
4,

DARTH MAUL

1aC SAST Tools (1)

Some examples of 1aC SAST tools in the market today

checkov k%CS.

by bridgecrew

by Checkmaxrx

' clouggail gggurics

Qqua

tfsec

@ Not promoting any tool, just using them as examples.

1aC SAST Tools (2)

Some criteria when selecting an IaC SAST tool

File types supported: Terraform, Cloudformation, Docker, Kubernetes, etc
Benchmarks supported: CIS, NIST

Ability to integrate with SCM systems like Git for automated workflows
Output format supported: JSON, HTML

High SNR (signal-to-noise ratio) or low false positives

Ability to understand the context and resolve references in laC

Ability to add/customise checks/rulesets

OSS or paid version

Ability to check runtime environment to identify configuration drifts

5.

|laC SAST in DevSecOps

1aC SAST integration (1)

How and where can IAC SAST tool be integrated?

laC SAST: User flow diagram

Developers CICD pipeline Security Check Deployment

9%0

Run as part of the
Integrate with git ~ workflow on every ~ Check scan output

pull request

Run locally for

immediate feedback

1aC SAST integration (2)

Some tips for efficient integration of 1aC SAST tool

[Integration with IDE, SCM like GitHub, GitLab, for immediate feedback
e Integration into CI/CD, for workflow automation

e High signal-to-noise ratio on the findings
| was able to reduce the number of findings from 143 to 16 on one of our internal projects by passing
high value security checks only to the 1aC SAST tool.

e Effective false positive management
e Low-friction security experience for developers

Important to find the balance it is, between the security risk and the value flow!

1aC SAST integration (3)

Typical DevSecOps Cycle

3. BUILD 8. RESPOND A 7. MONITOR
Software Block attack, Log collection,
Composition roll-back SIEM, RASP

Analysis, SAST

2. CODE 6. DEPLOY
Dynamic
e SAST Application
Security Testing
(DAST)
1.PLAN 40 4. TEST AN, 5.RELEASE
Secure design, Penetration testing, Access and
Threat modelling IAST configuration mgmt

) 4

1aC SAST integration (4)
Typical DevSecOps Cycle with laC SAST

3. BUILD 8. RESPOND
Software Block attack,
Composition roll-back
Analysis, SAST,
laC SAST
2. CODE
SAST, 1aC SAST in
IDE, Git

</>
E#

1.PLAN 4 4. TEST
Secure design, Penetration testing,
Threat modelling IAST

A 7. MONITOR
Log collection,

SIEM, RASP

6. DEPLOY
DAST

A, 5. RELEASE

Access and
configuration mgmt

Topics

laC

Vulnerabilities in infrastructure
|aC SAST

|laC SAST tools

|aC SAST in DevSecOps
Conclusion

O b WN -

Conclusion

laC SAST Benefits

3. BUILD
Software
Composition
Analysis, SAST,
laC SAST in CI/CD

2. CODE

SAST, 1aC SAST in |

IDE/run locally
el
1.PLAN 4

Secure design,
Threat modelling

¥

@

0
Ll

8. RESPOND

Block attack,
roll-back

" & ‘
% 4 TEST

Penetration testing,
IAST

hd

@
o
oV

A 7. moniToR

Log collection, SIEM,
RASP

04
0&0
6. DEPLOY

DAST

‘Qc
gp
00
40,7 5. RELEASE

Access and
configuration mgmt

Shift-left = less effort, less money &
less stress

Find vulnerabilities before deployment
Closer to dev cycle

Helps develop secure mindset

Secure templates/ paved road

More information in the code
Complement DAST findings
Complement pentesting

Need not be security experts

Why wait, use the force!

Implement laC SAST in your
workflow you must. Hmmm...?

Thank You!

