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About Myself

« Since 2000 I've been innovating on
security, algorithms and their

intersection

« Love the game of understanding

threats and designing mitigation
« Love math and algorithms

« Love building security technology
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Discrimination is not just the domain of humans. Now artificial intelligence is showing
gender bias too

In a world where Al tools are being developed to help everyone from crimefighters to recruiters, it is ‘ ec no ogy
imperative to ensure they are built without discrimination based on gender, race or colour
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https://www.youtube.com/watch?v=cQ54GDm1eL0
https://www.youtube.com/watch?v=v0zFR0ElRd4

The Security Lifecycle of new Technologies
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Data Poisoning

How does it work?
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Data Poisoning in the Wild

Did you enjoy your vacation?

Sll])])Ol't The G“ardian Search jobs | @ Signin O, Search v The International edition ~

Available for everyone, funded by readers G

uardian

News Opinion Sport Culture Lifestyle More v

Travel » UK Europe US

Tripadvisor © This article is more than 2 months old
v Read The

TripAdvisor is failing to stop fake hotel Guardian without

reviews, says Which? interruption on all
your devices

Analysis 0of 250,000 reviews for top-rated hotels finds one in seven .
with ‘hallmarks’ of fakes Subscribe now

most viewed

Cybertruck: Teslaunveils
new pickup truck but
windows shatter during
demo

Scooter Braun pleads for
' resolution with Taylor Swift
following death threats

Exclusive: Bolsonaro is
turning back the clock on
Brazil, says Lula da Silva

Imelda Staunton set to
replace Olivia Colman in

The travel website TripAdvisor is failing to stop fake reviews boosting the Netflix's The Crown

rankings of top-rated hotels, Which? has claimed.

Grace Millane trial: New

imperva



Data Poisoning in the Wild

Model Skewing

* Model skewing for Gmail
Spam filter

* Attack includes massive
amounts of spam emails
mislabeled as BENIGN
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SpamBayes Availability Attack

Computer Science - Published in LEET 2008

Exploiting Machine Learning to Subvert Your

—é— Optimal =8~ Usenet Dictionary

o o S Filt
The Victim e

Blaine Nelson, Marco Barreno

« SpamBayes spam filter

« Token-based Bayesean network

The Attack

« Make the model learn incorrectly
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« Dictionary attack: “push” words to the model NETE IS I A
spam dictionary "

Figure 1: Three dictionary attacks on initial training set
of 10,000 messages (50% spam). We plot percent of ham
classified as spam (dashed lines) and as spam or unsure
Impa Ct (solid lines) against the attack as percent of the training
set. We show the optimal attack (black A), the Usenet
dictionary attack (blue [J), and the Aspell dictionary at-

° 1% data p0|50n|ng Was SUffICIent tO make the tack (green (). Each attack renders the filter unusable
mOdel detect SPAM for 90% Of the |eg|t ma”S with as little as 1% control (101 messages).
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Figure 1: Three dictionary attacks on initial training set
of 10,000 messages (50% spam). We plot percent of ham
classified as spam (dashed lines) and as spam or unsure
Impa Ct (solid lines) against the attack as percent of the training
set. We show the optimal attack (black A), the Usenet

0 . . . . dictionary attack (blue [J), and the Aspell dictionary at-
° 1 /0 data p0|50n|ng Was SUffICIent tO make the tack (green (). Each attack renders the filter unusable
mOdel detect SPAM for 90% Of the |eg|t ma”S with as little as 1% control (101 messages).
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Clean-Label Attacks

The Victim:

Target instances from Fish class

» |Image classification
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The attacker needs zero intervention in the . — R —
labeling process! DA DAL MR g

from fish
bases

(a) Sample target and poison instances.
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Clean-Label Attacks

Results of 1099 experiments

The Victim:

Target instances from Fish class

poisoned
model
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Mitigation of Data Poisoning

Filter data from suspicious origins:

E.g., suspicious origins (IP addresses), suspicious clients (bots), etc.
(suspicious data?)
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Filter data from suspicious origins:
E.g., suspicious origins (IP addresses), suspicious clients (bots), etc.
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Fault-tolerant data sampling:

E.g., limit the impact (number, weight) of data points arriving from a single | 11
“entity” (user, IP, etc.)
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Mitigation of Data Poisoning

Filter data from suspicious origins:

E.g., suspicious origins (IP addresses), suspicious clients (bots), etc.
(suspicious data?)

Fault-tolerant data sampling:

E.g., limit the impact (number, weight) of data points arriving from a single | 11
“entity” (user, IP, etc.)

Diff-Tracking (Detection)

Look for significant diff from the previous model

Reliable benchmark (Detection)

Model validation test suite, e.g., accuracy for a certain golden dataset
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Summary so far

» Data poisoning is a significant threat on learning mechanisms
* Threat is critical when using data from untrusted sources

* No silver bullet mitigation
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Securing Web Applications and APIs

Outsider o) cod j Applications
Threats Y & APIs

WAF
Negative security model Positive security model
« Aka rule-based security, signhature-based « Aka Anomaly Detection
« All's good except for what we know is bad « Learn a baseline profile for Web/API traffic
and Block/Alert on deviation
« All's bad except for what we know is good
Pros: Accuracy | Pros: Zero-days, auto-customization
Cons: Zero-days, ongoing update Cons: False-positives
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Securing Web Applications and APIs

Outsider o) ole j
[ |

Threats

WAF

Negative security model
« Aka rule-based security, signhature-based

« All's good except for what we know is bad

Pros: Accuracy
Cons: Zero-days, ongoing update

Applications
& APIls

Positive security model

« Aka Anomaly Detection

« Learn a baseline profile for Web/API traffic

and Block/Alert on deviation

« All's bad except for what we know is good

Pros: Zero-days, auto-customization
Cons: False-positives
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o°‘°? g

imperva



Web/API Traffic Profile

- Body Params
- QS Params

« Cookies
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Web/API Traffic Profile

Object/Container Object

- Digital Locations - Body Params
(URL/endpoint) - QS Params

- Hosts - Cookies

- Methods
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Web/API Traffic Profile

Object/Container

Object

Object Traffic Profile

- Digital Locations
(URL/endpoint)

- Hosts

- Methods

- Body Params
- QS Params

« Cookies

- Type

- Multiplicity range

» Optional?

- Mandatory?

- Param size range (num)

- Param charset (str)

- Param Length range (str)
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Threshold-Learning for Web/API Profile

4 _ )
Cleaning
* Filter suspicious
traffic
o J

E.g., suspicious events
E.g., suspicious IPs

E.g., traffic during attacks
E.g., traffic from bots

»

(

o

Learning

 Build profile using
threshold-learning
/

»

Learn only what you see in
requests from

>= X, unique IP addresses

>= X, unique User Agents

>= X3 unique Geo-Locations
>= X, unique ldentified clients
>= Xz unique Hours/Days

>= Xg Unique Att6

>= X, unique Att/

4 )
Enforcement
 Alert on deviations

from profile

g J
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Threshold-Learning for Web/API Profile

4 _ )
Cleaning
* Filter suspicious
traffic
o J

E.g., suspicious events
E.g., suspicious IPs

E.g., traffic during attacks
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J

»

Learn only what you see in
requests from

>= X, unique IP addresses

>= X, unique User Agents

>= X3 unique Geo-Locations
>= X, unique ldentified clients
>= Xz unique Hours/Days

>= Xg Unique Att6

>= X, unique Att/
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Enforcement
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\
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Easy | essing, but
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Dog Food Rating Challenge

Fault-Tolerant Data Sampling

City

New York
New York

Los Angeles
San Francisco
New York

Los Angeles
Los Angeles
San Francisco
Los Angeles
San Francisco
New York

San Francisco
New York

Los Angeles
Los Angeles
New York
New York

Los Angeles
New York
New York

Breed

Pomeranian
Pomeranian

St Bernard
Pomeranian
Pomeranian

St Bernard
German Shepherd
Dog Breed
Pomeranian
German Shepherd
Pomeranian

St Bernard

St Bernard
German Shepherd
Pomeranian
Pomeranian
German Shepherd
Pomeranian
Pomeranian

St Bernard

All

Teo
Like
Like

11

Pedigree

Raw results:
e Teo: 11 Likes
« Pedigree: 5 Likes

Threshold Learning
« >=3 cities; >=3 breeds

* Only Pedigree pass
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Threshold-Learning for Boolean Facts

Fixed-Memory Learning

Pedigree

Tasty

City Breed
) )
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Threshold-Learning for Boolean Facts

Fixed-Memory Learning

Pedigree
Objects

_
City Breed
(€)) €))

Attributes
/ /

Sets
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Threshold-Learning for Boolean Facts

Fixed-Memory Learning
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Threshold-Learning for Boolean Facts

Fixed-Memory Learning
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Threshold-Learning for Boolean Facts

Fixed-Memory Learning
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Threshold-Learning for Boolean Facts

Can learn: In Application/API Profile:
Learn Flag FACT_X_SEEN
Enforce Flag FACT_X_ALLOWED

Boolean facts — Object X has property Y

Memory consumption:

But is this enough? What can you express

Proportional to number of objects and ,
with Boolean facts?

number of properties
Proportional to the thresholds

But independent of the size of the data
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Just Flag-It!

Expressing Profiling Features with Boolean Facts

Objects (and Containers)

- Digital Locations (URL/endpoint)
- Hosts

- Methods

- Body Params

- QS Params

- Cookies
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Just Flag-It!

Expressing Profiling Features with Boolean Facts

Objects (and Containers) _HAS_ _
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- QS Params "HAS_ -
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Just Flag-It!

Expressing Profiling Features with Boolean Facts

Objects (and Containers) _HAS_ _

- Digital Locations (URL/endpoint) _HAS_ _

- Hosts _HAS_ _

- Methods _HAS_ _

- Body Params _HAS_ _
- QS Params "HAS_ -

- Cookies

What abo
Types, Ra
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Just Flag-It!

Expressing Traffic Profile with Boolean Facts

Object Traffic Profile:

- Type

- Multiplicity range

- Optional?

- Mandatory?

- Param size range (for num)
- Param charset (for str)

- Param Length range (for str)

imperva



Just Flag-It!

Expressing Traffic Profile with Boolean Facts 0(\0":;‘):\%
e
Object Traffic Profile: Boolean param-type facts:
- Type ] -
- Multiplicity range Al
- Optional? ‘ -

- Mandatory?
- Param size range (for num) .
- Param charset (for str) -

- Param Length range (for str) .
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Just Flag-It!

Expressing Traffic Profile with Boolean Facts 0‘\0?;?:\%
e
Object Traffic Profile: Boolean param-type facts: Boolean existence facts:
- Type ] ; ] -
- Multiplicity range ALy . )
- Optional? . _

- Mandatory?
- Param size range (for num) .
- Param charset (for str) -

- Param Length range (for str) .
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Just Flag-It!

Dealing with Sets and Ranges

Object Traffic Profile:

- Type

- Multiplicity range

- Optional?

- Mandatory?

- Param size range (for num)
- Param charset (for str)

- Param Length range (for str)
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Just Flag-It!

Dealing with Sets and Ranges

Object Traffic Profile:

- Type

- Multiplicity range

- Optional?

- Mandatory?

- Param size range (for num)
- Param charset (for str)

- Param Length range (for str)

Boolean charset facts

(one-hot-encoding):
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Just Flag-It!

Dealing with Sets and Ranges

Object Traffic Profile:

- Type

- Multiplicity range

- Optional?

- Mandatory?

- Param size range (for num)
- Param charset (for str)

- Param Length range (for str)

Boolean charset facts

(one-hot-encoding):

Boolean range facts

(discretization):
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Summary and Conclusions

Data poisoning is a significant threat on learning mechanisms
- Threshold-based learning may provide an adequate robust learning solution

- The Boolean facts framework provides a streaming-friendly implementation for

Threshold-based Learning

Many features can be expressed with Boolean facts
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