

Al in a Minefield

Learning from Poisoned Data

Itsik Mantin

Head of Innovation Imperva

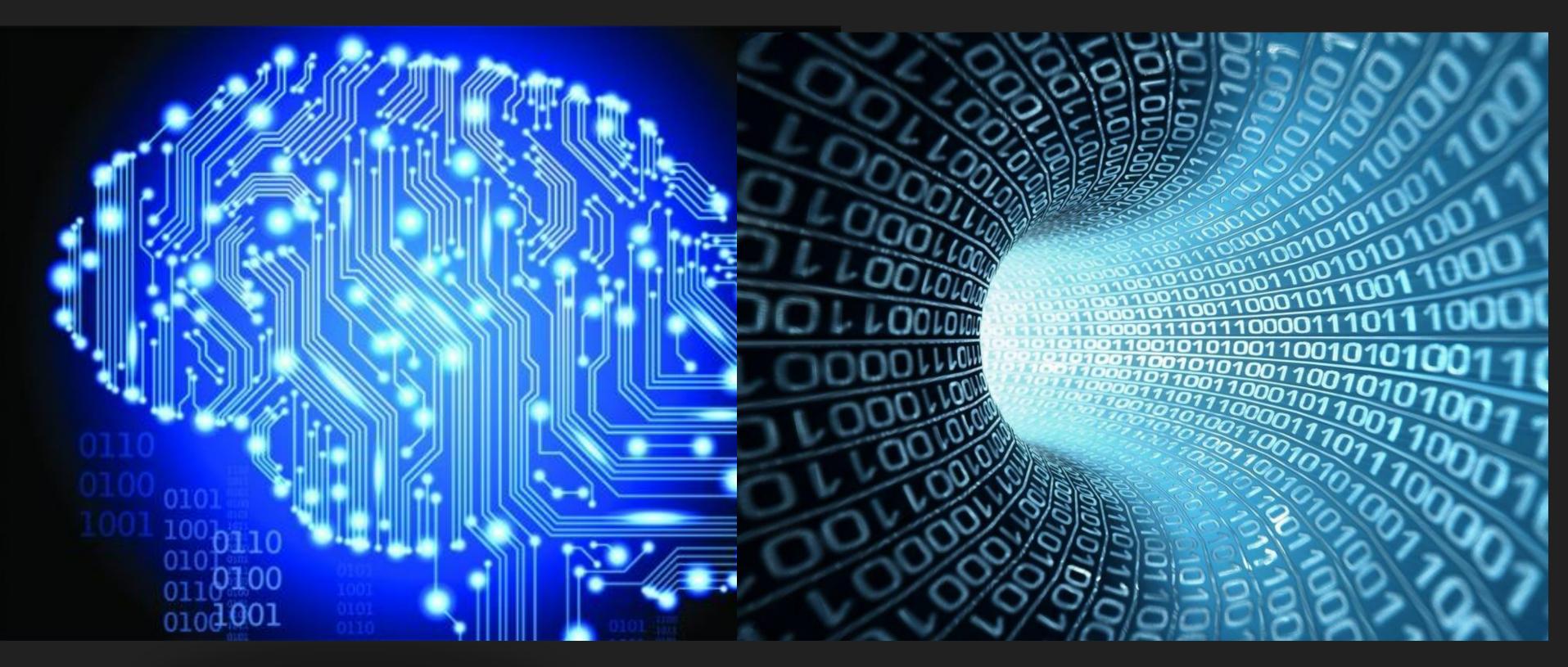
About Myself

- Since 2000 I've been innovating on security, algorithms and their intersection
- Love the game of understanding threats and designing mitigation
- Love math and algorithms
- Love building security technology

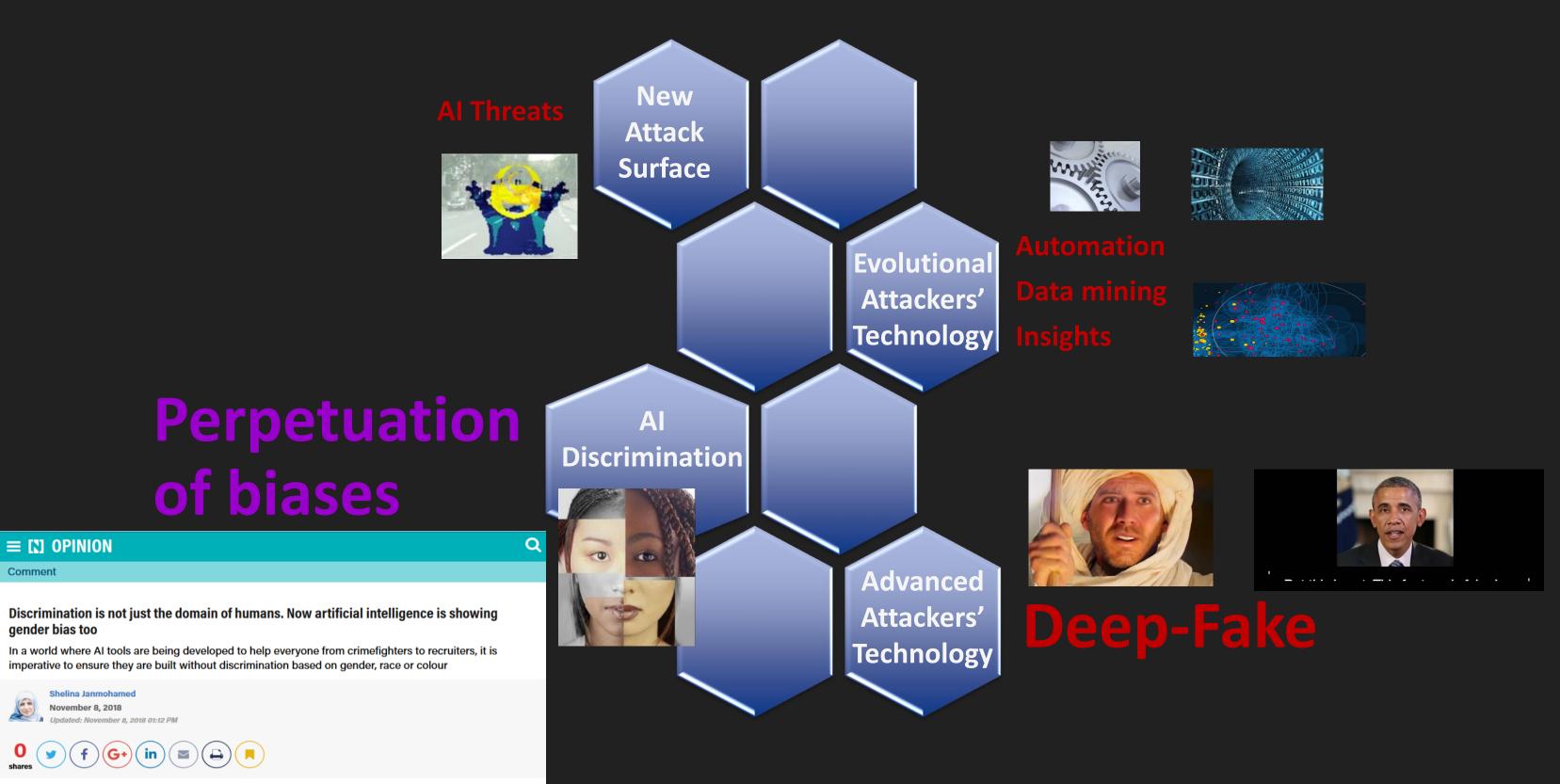
Outline

- Intro
- Al Risks \rightarrow Al Threats \rightarrow Data Poisoning
- Learning from Web Traffic
- Summary

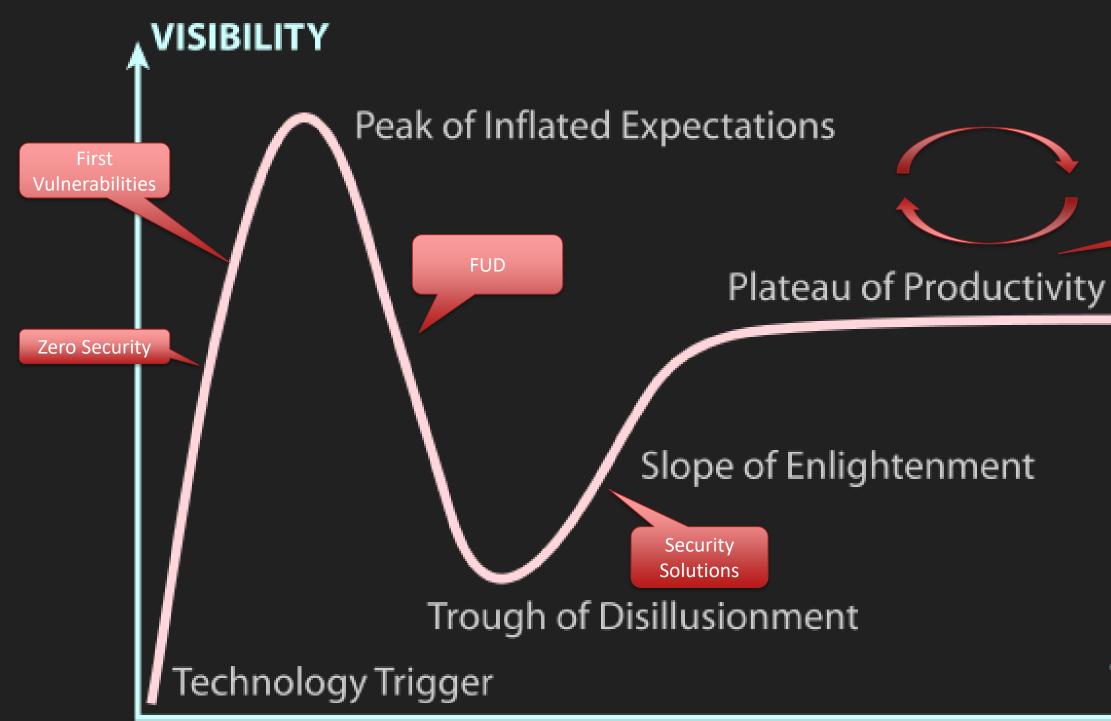
Al Era == Data Era



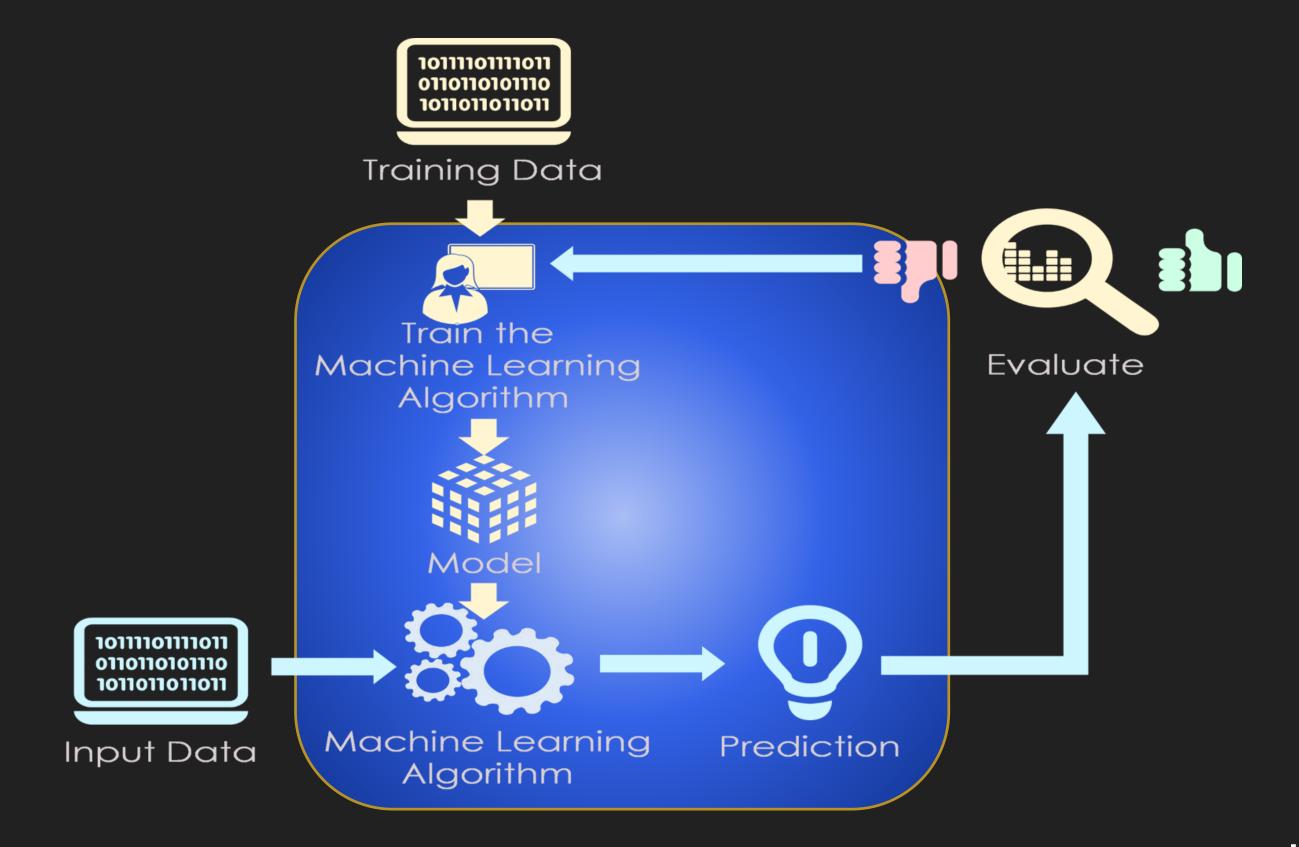
The Good, the Bad and the Ugly



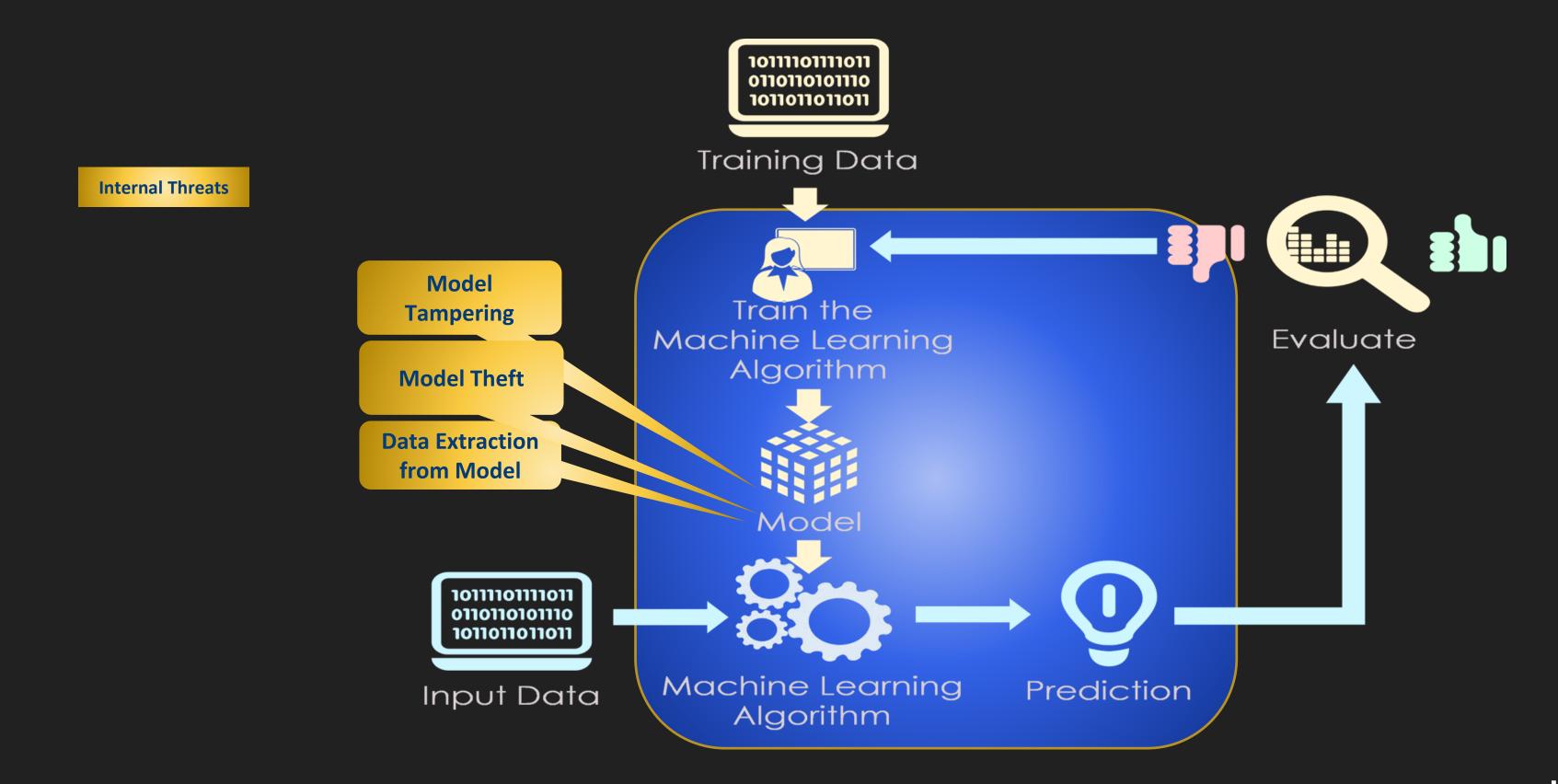
The Security Lifecycle of new Technologies



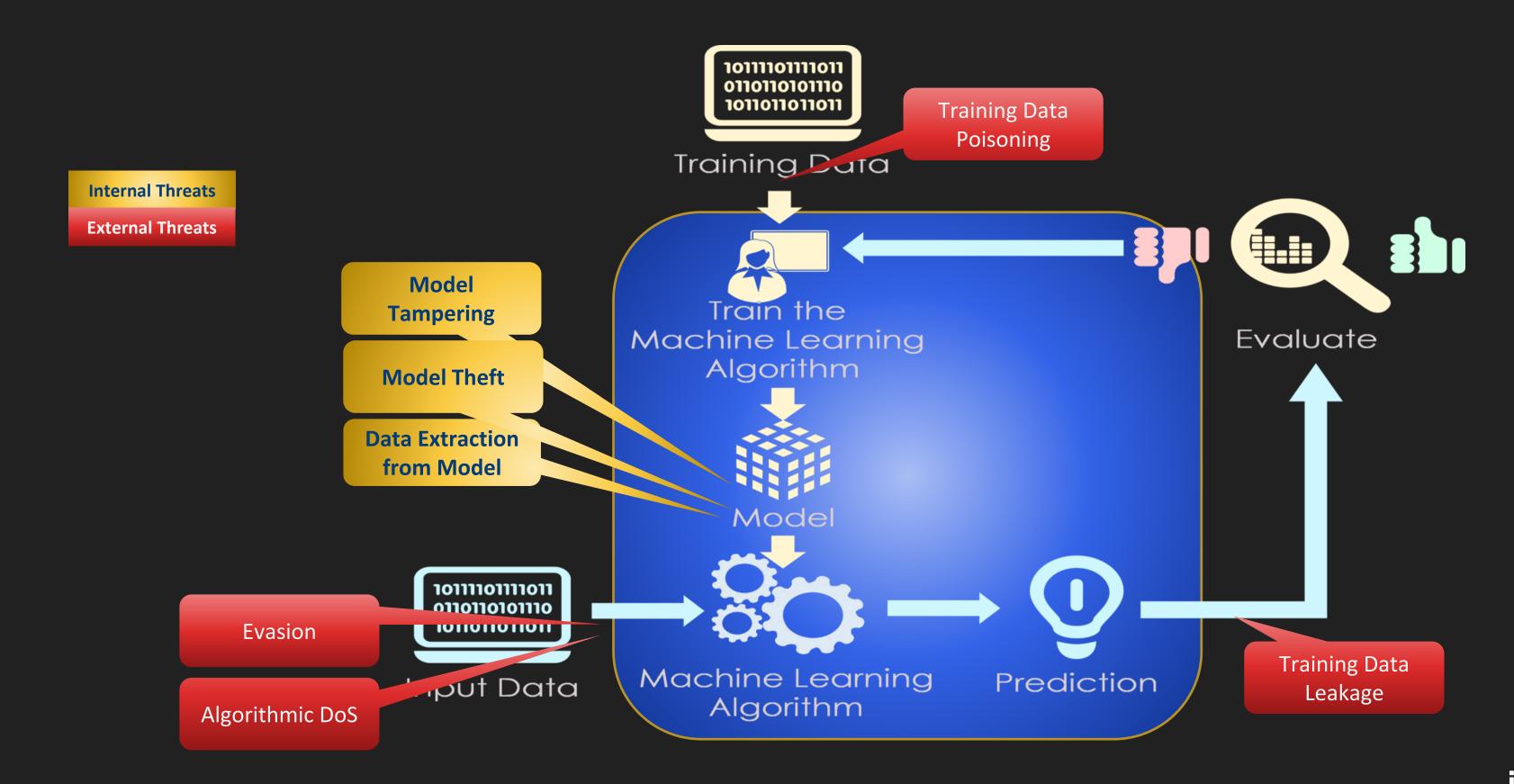
AI Threats



AI Threats

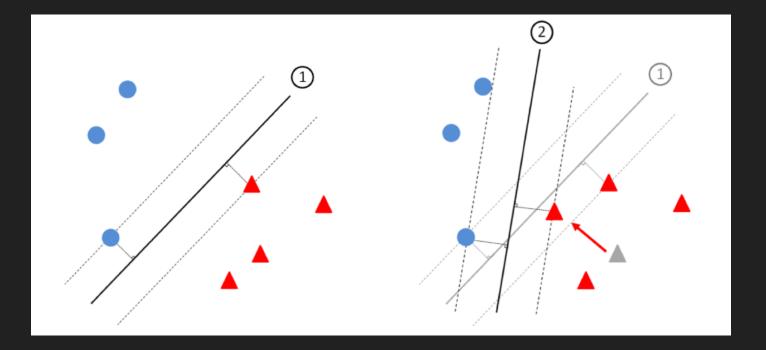


AI Threats



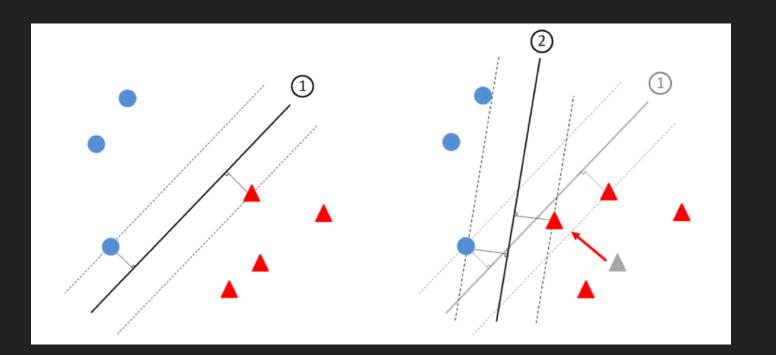
Data Poisoning

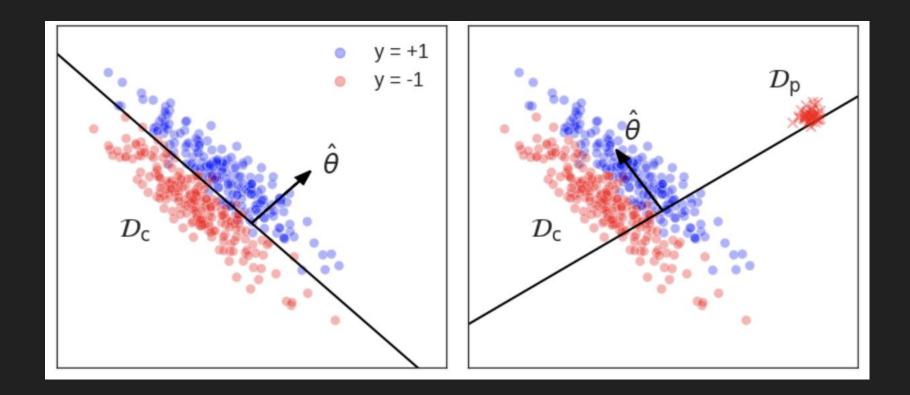
How does it work?



Data Poisoning

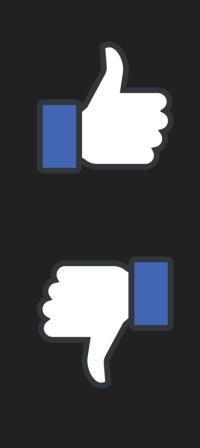
How does it work?





Data Poisoning in the Wild

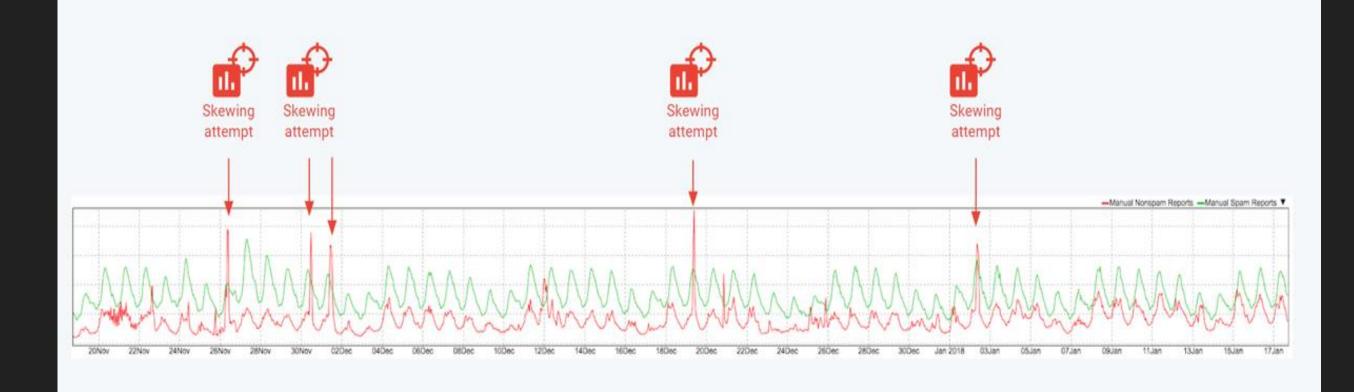
Did you enjoy your vacation?



Data Poisoning in the Wild

Model Skewing

- Model skewing for Gmail Spam filter
- Attack includes massive amounts of spam emails mislabeled as BENIGN



SpamBayes Availability Attack

The Victim

Computer Science • Published in LEET 2008

Exploiting Machine Learning to Subvert Your Spam Filter

Blaine Nelson, Marco Barreno, +6 authors Kai Xia

- SpamBayes spam filter
- Token-based Bayesean network

The Attack

- Make the model learn incorrectly
- Dictionary attack: "push" words to the model spam dictionary

Impact

• 1% data poisoning was sufficient to make the model detect SPAM for 90% of the legit mails

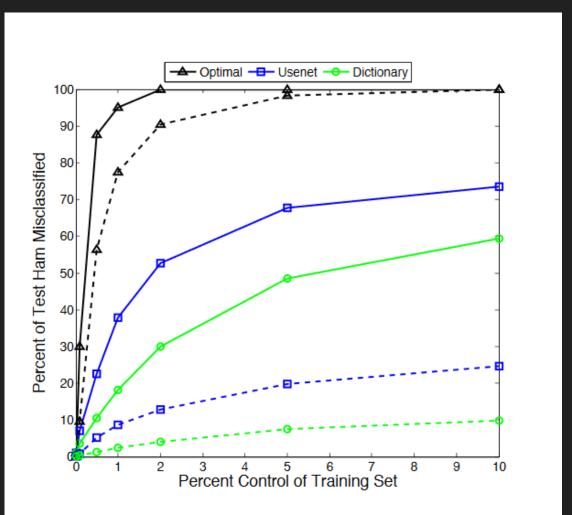


Figure 1: Three dictionary attacks on initial training set of 10,000 messages (50% spam). We plot percent of ham classified as *spam* (dashed lines) and as *spam* or *unsure* (solid lines) against the attack as percent of the training set. We show the optimal attack (black \triangle), the Usenet dictionary attack (blue \Box), and the Aspell dictionary attack (green \bigcirc). Each attack renders the filter unusable with as little as 1% control (101 messages).

SpamBayes Availability Attack

The Victim

Computer Science • Published in LEET 2008

Exploiting Machine Learning to Subvert Your Spam Filter

Blaine Nelson, Marco Barreno, +6 authors Kai Xia

- SpamBayes spam filter
- Token-based Bayesean network

The Attack

- Make the model learn incorrectly
- Dictionary attack: "push" words to the model spam dictionary

Impact

• 1% data poisoning was sufficient to make the model detect SPAM for 90% of the legit mails

Figure 1: Three dictionary attacks on initial training set of 10,000 messages (50% spam). We plot percent of ham classified as *spam* (dashed lines) and as *spam* or *unsure* (solid lines) against the attack as percent of the training set. We show the optimal attack (black \triangle), the Usenet dictionary attack (blue \Box), and the Aspell dictionary attack (green \bigcirc). Each attack renders the filter unusable with as little as 1% control (101 messages).

Clean-Label Attacks

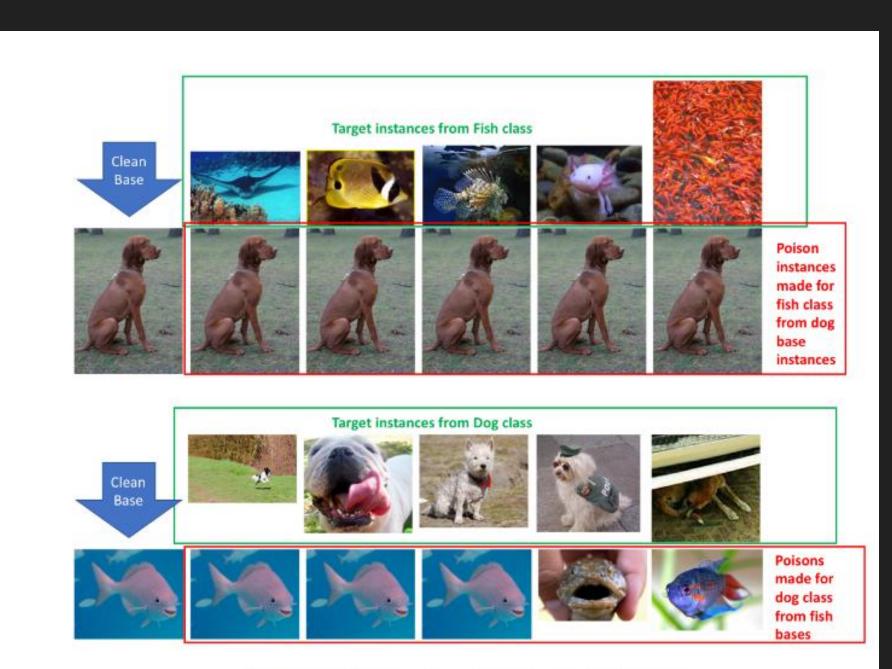
The Victim:

• Image classification

The Attack?

- Craft invisible noise to add to a data sample
- Fail manual labeling

The attacker needs zero intervention in the labeling process!



(a) Sample target and poison instances.

Clean-Label Attacks

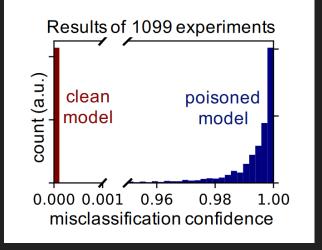
The Victim:

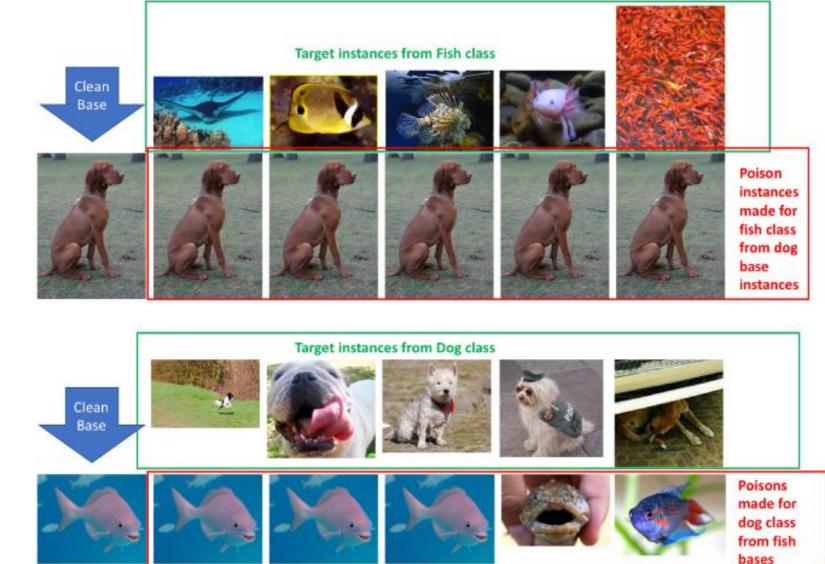
Image classification ullet

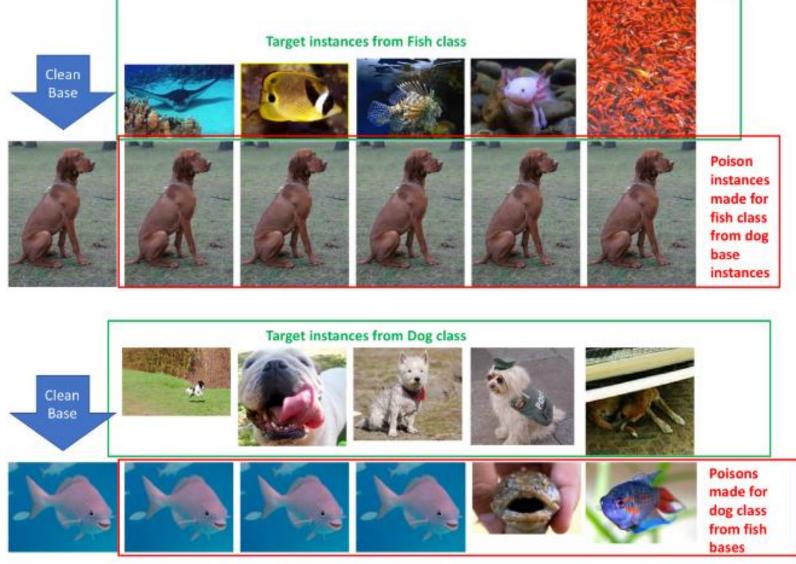
The Attack?

- Craft invisible noise to add to a data \bullet sample
- Fail manual labeling ullet

The attacker needs zero intervention in the labeling process!







(a) Sample target and poison instances.

Filter data from suspicious origins:

E.g., suspicious origins (IP addresses), suspicious clients (bots), etc. (suspicious data?)

Filter data from suspicious origins:

E.g., suspicious origins (IP addresses), suspicious clients (bots), etc. (suspicious data?)

Fault-tolerant data sampling:

E.g., limit the impact (number, weight) of data points arriving from a single "entity" (user, IP, etc.)

Filter data from suspicious origins:

E.g., suspicious origins (IP addresses), suspicious clients (bots), etc. (suspicious data?)

Fault-tolerant data sampling:

E.g., limit the impact (number, weight) of data points arriving from a single "entity" (user, IP, etc.)

Diff-Tracking (Detection)

Look for significant diff from the previous model

Filter data from suspicious origins:

E.g., suspicious origins (IP addresses), suspicious clients (bots), etc. (suspicious data?)

Fault-tolerant data sampling:

E.g., limit the impact (number, weight) of data points arriving from a single "entity" (user, IP, etc.)

Diff-Tracking (Detection)

Look for significant diff from the previous model

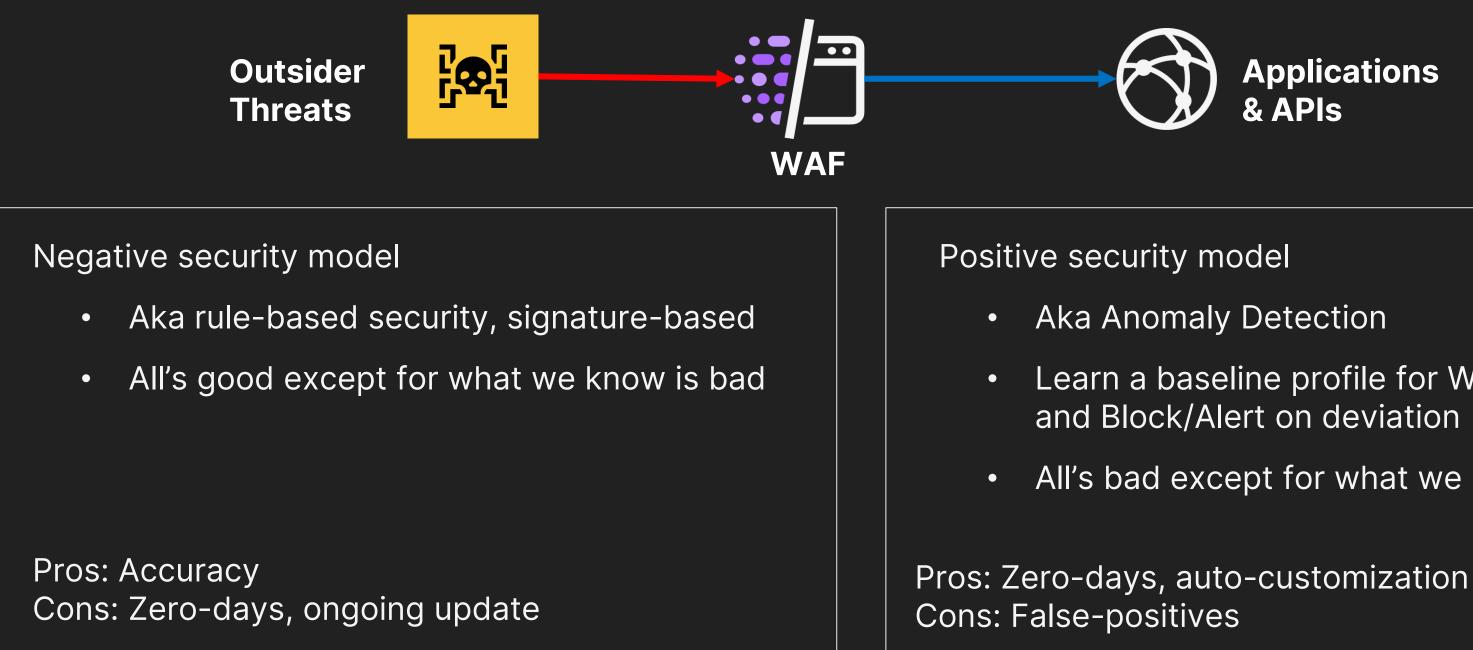
Reliable benchmark (Detection)

Model validation test suite, e.g., accuracy for a certain golden dataset

Summary so far

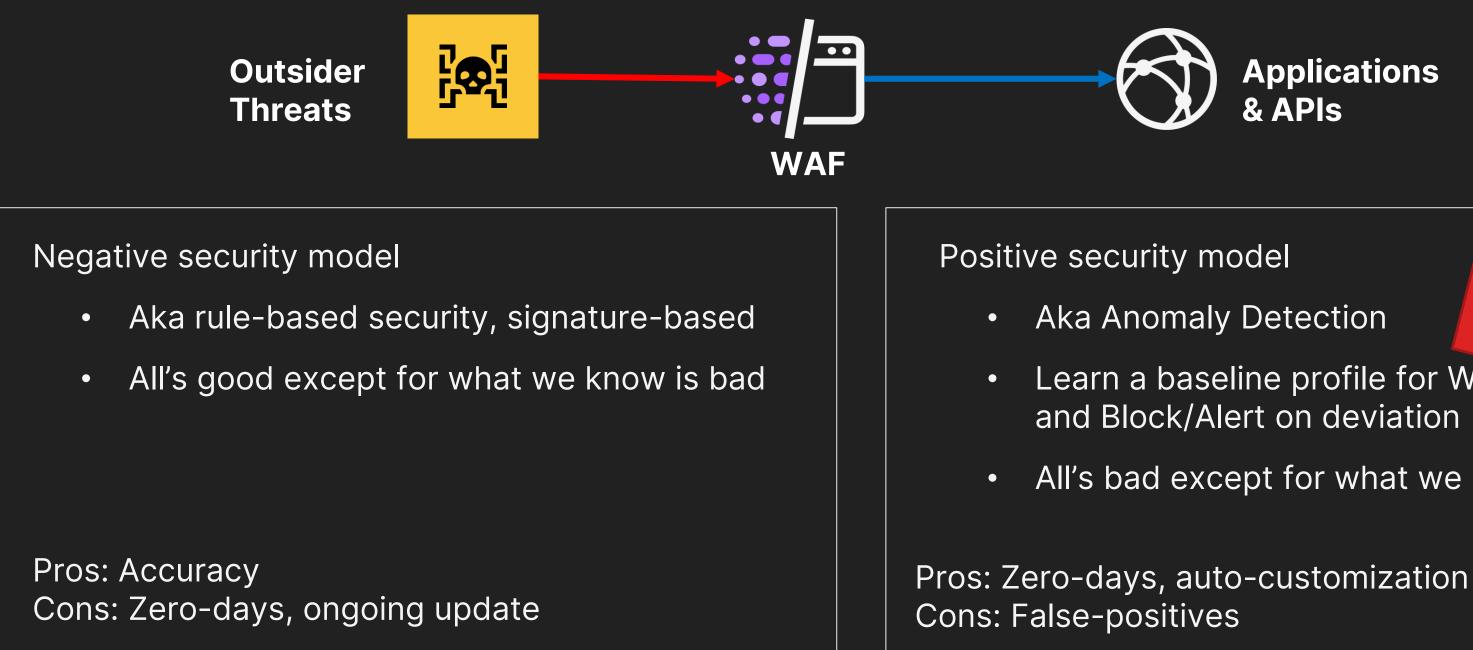
- Data poisoning is a significant threat on learning mechanisms ullet
- Threat is critical when using data from untrusted sources •
- No silver bullet mitigation •

Securing Web Applications and APIs



- Learn a baseline profile for Web/API traffic
- All's bad except for what we know is good

Securing Web Applications and APIs



- Learn a baseline profile for Web/API traffic
- All's bad except for what we know is good

Data Poisoning

Web/API Traffic Profile

- Body Params
- QS Params
- Cookies
- ...

Web/API Traffic Profile

Object/Container

Object

- Digital Locations (URL/endpoint)
- Hosts
- Methods
- •

- Body Params
- QS Params
- Cookies
- •••

Web/API Traffic Profile

Object/Container

Object

- Digital Locations (URL/endpoint)
- Hosts
- Methods
- •

- Body Params
- QS Params
- Cookies
- •••

Object Traffic Profile

• Type

• ...

- Multiplicity range
- Optional?
- Mandatory?
- Param size range (num)
- Param charset (str)
- Param Length range (str)

Threshold-Learning for Web/API Profile

Cleaning

• Filter suspicious traffic

Learning

 Build profile using threshold-learning

- E.g., suspicious events
- E.g., suspicious IPs
- E.g., traffic during attacks
- E.g., traffic from bots

Learn only what you see in requests from

- >= X_1 unique IP addresses
- >= X_2 unique User Agents
- >= X_3 unique Geo-Locations
- >= X_4 unique Identified clients
- >= X_5 unique Hours/Days
- >= X_6 unique Att6
- >= X_7 unique Att7
- • • •

 Alert on deviations from profile

Threshold-Learning for Web/API Profile

Cleaning

• Filter suspicious traffic

Learning

 Build profile using threshold-learning

- E.g., suspicious events
- E.g., suspicious IPs
- E.g., traffic during attacks
- E.g., traffic from bots

Learn only what you see in requests from

- >= X_1 unique IP addresses
- >= X_2 unique User Agents
- >= X_3 unique Geo-Locations
- >= X_4 unique Identified clients
- >= X_5 unique Hours/Days
- >= X_6 unique Att6
- >= X_7 unique Att7
- • • •

Enforcement

 Alert on deviations from profile

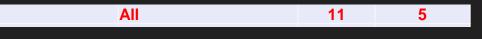
Easy in **Batch Processing**, but consumes huge memory

Dog Food Rating Challenge

Fault-Tolerant Data Sampling

T		
	<u>Ilu</u>	

City	Breed	Тео	Pedigree
New York	Pomeranian	Like	
New York	Pomeranian	Like	
Los Angeles	St Bernard		
San Francisco	Pomeranian		Like
New York	Pomeranian	Like	
Los Angeles	St Bernard		
Los Angeles	German Shepherd	Like	Like
San Francisco	Dog Breed		
Los Angeles	Pomeranian	Like	
San Francisco	German Shepherd		
New York	Pomeranian	Like	
San Francisco	St Bernard		
New York	St Bernard		
Los Angeles	German Shepherd	Like	
Los Angeles	Pomeranian	Like	Like
New York	Pomeranian		Like
New York	German Shepherd	Like	
Los Angeles	Pomeranian	Like	
New York	Pomeranian	Like	
New York	St Bernard		Like



Raw results:

- Teo: 11 Likes \bullet
- Pedigree: 5 Likes ullet

Threshold Learning

- >=3 cities; >=3 breeds •
- Only Pedigree pass ullet

Dog Food Rating Challenge

Fault-Tolerant Data Sampling

TRACT		No. 194	A. 70
alita	ĮĮ		

City	Breed	Тео	Pedigree
New York	Pomeranian	Like	
New York	Pomeranian	Like	
Los Angeles	St Bernard		
San Francisco	Pomeranian		Like
New York	Pomeranian	Like	
Los Angeles	St Bernard		
Los Angeles	German Shepherd	Like	Like
San Francisco	Dog Breed		
Los Angeles	Pomeranian	Like	
San Francisco	German Shepherd		
New York	Pomeranian	Like	
San Francisco	St Bernard		
New York	St Bernard		
Los Angeles	German Shepherd	Like	
Los Angeles	Pomeranian	Like	Like
New York	Pomeranian		Like
New York	German Shepherd	Like	
Los Angeles	Pomeranian	Like	
New York	Pomeranian	Like	
New York	St Bernard		Like

	All	11	5
	Pomeranian	8	3
	St Bernard	0	1
	German Shepherd	3	1
San Francisco		0	1
New York		6	2
Los Angeles		5	2

Raw results:

- Teo: 11 Likes \bullet
- Pedigree: 5 Likes •

Threshold Learning

- >=3 cities; >=3 breeds
- Only Pedigree pass ullet

Dog Food Rating Challenge

Fault-Tolerant Data Sampling

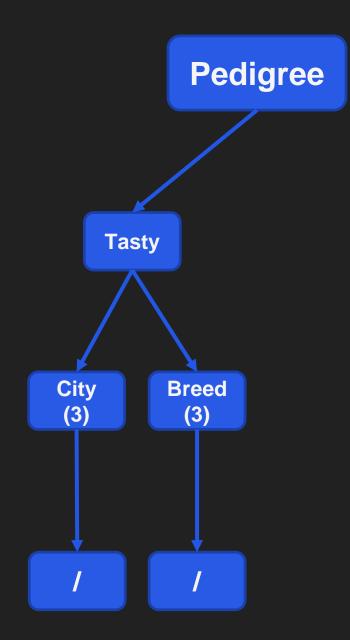
City	Breed	Тео	Pedigree
New York	Pomeranian	Like	
New York	Pomeranian	Like	
Los Angeles	St Bernard		
San Francisco	Pomeranian		Like
New York	Pomeranian	Like	
Los Angeles	St Bernard		
Los Angeles	German Shepherd	Like	Like
San Francisco	Dog Breed		
Los Angeles	Pomeranian	Like	
San Francisco	German Shepherd		
New York	Pomeranian	Like	
San Francisco	St Bernard		
New York	St Bernard		
Los Angeles	German Shepherd	Like	
Los Angeles	Pomeranian	Like	Like
New York	Pomeranian		Like
New York	German Shepherd	Like	
Los Angeles	Pomeranian	Like	
New York	Pomeranian	Like	
New York	St Bernard		Like
	Pomeranian	10	
	St Bernard	5	
	German Shepherd	4	
San Francisco		4	
New York		9	
Los Angeles		7	
	All	11	5
	Pomeranian	8	3
	St Bernard	0	1
	German Shepherd	3	1
San Francisco		0	1
New York		6	2
Los Angeles		5	2

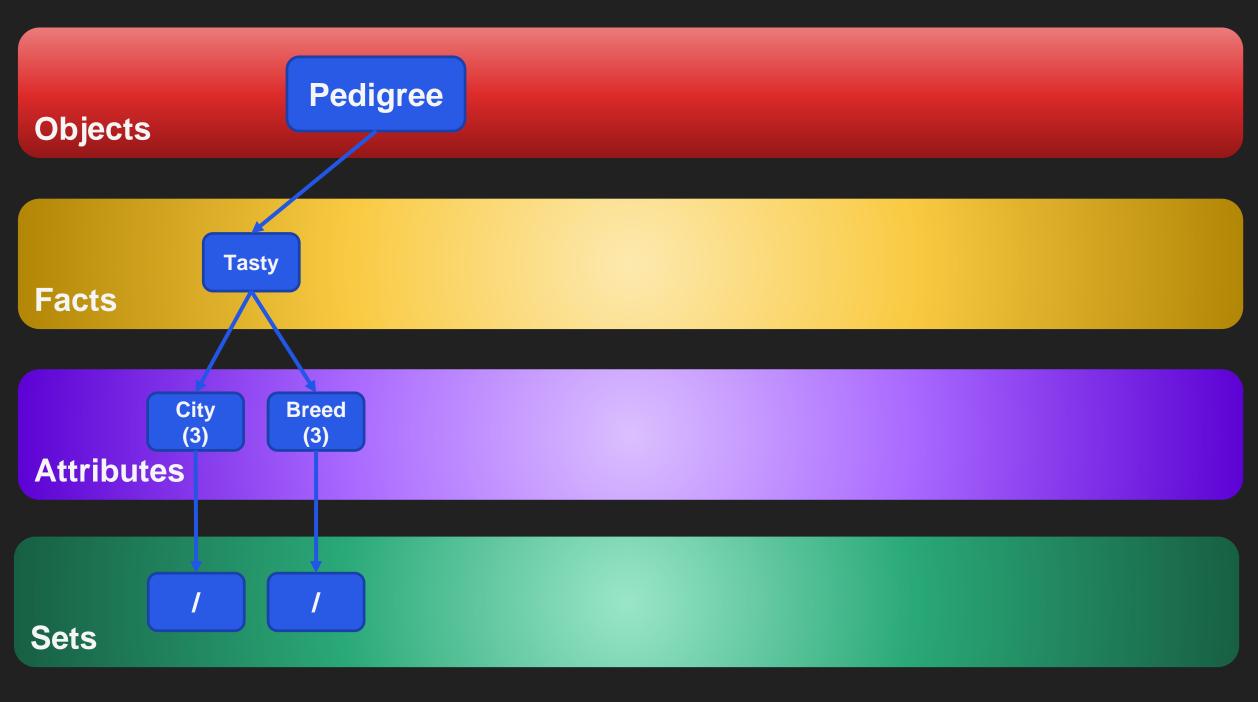
Raw results:

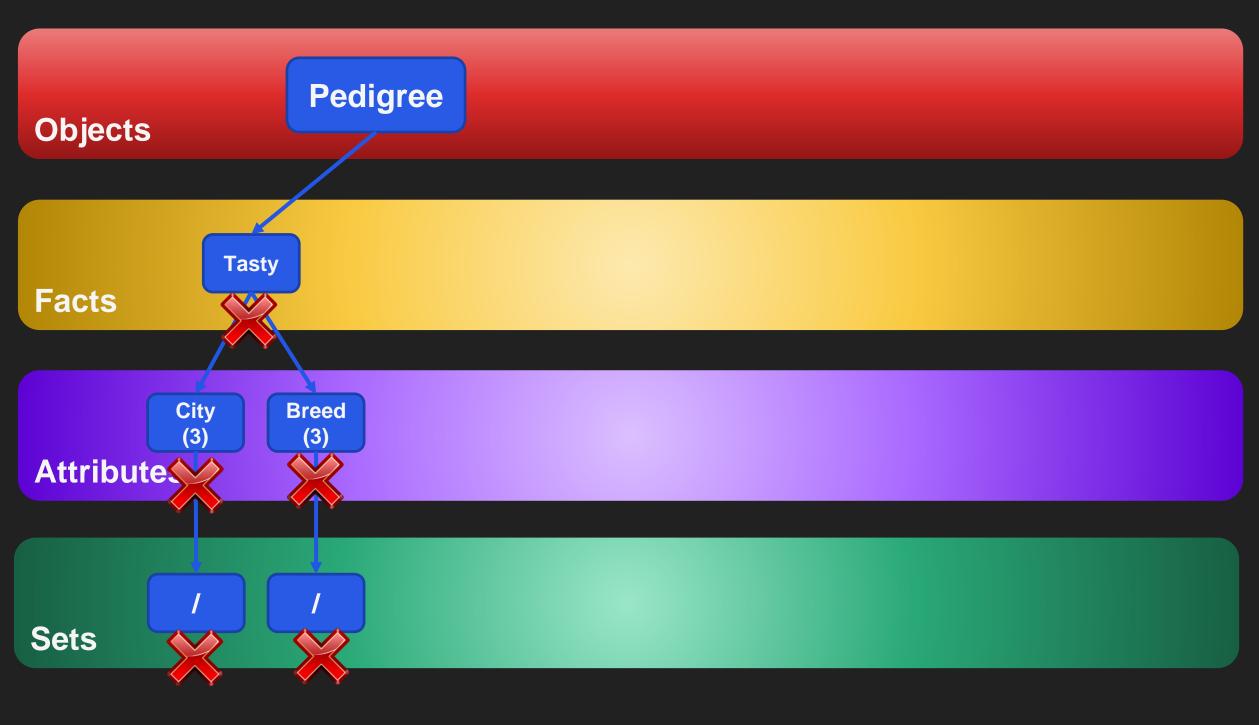
- Teo: 11 Likes \bullet
- Pedigree: 5 Likes •

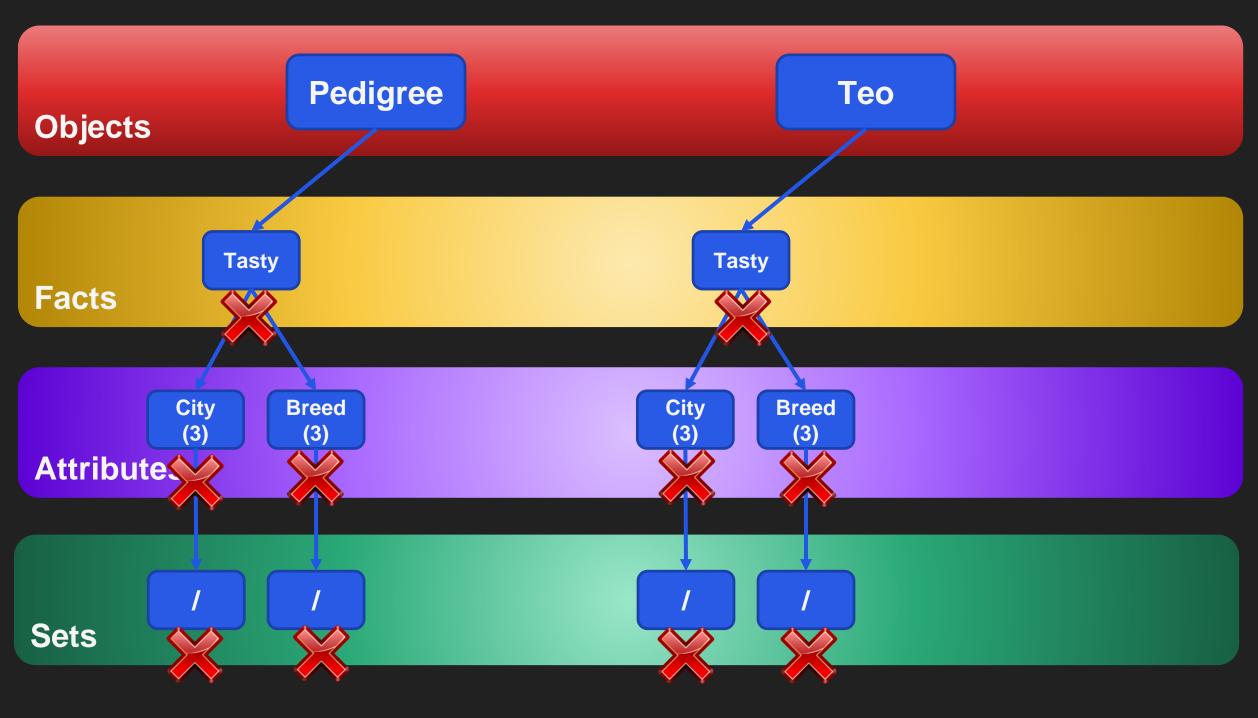
Threshold Learning

- >=3 cities; >=3 breeds
- Only Pedigree pass ullet

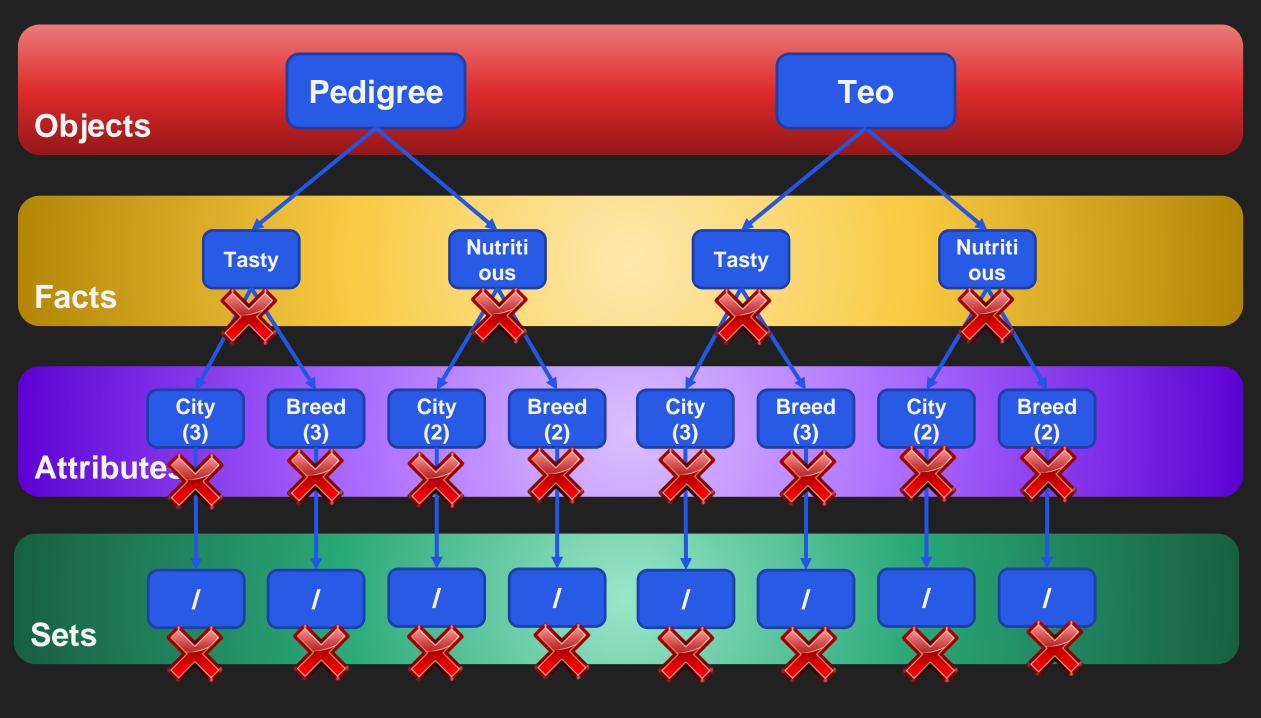




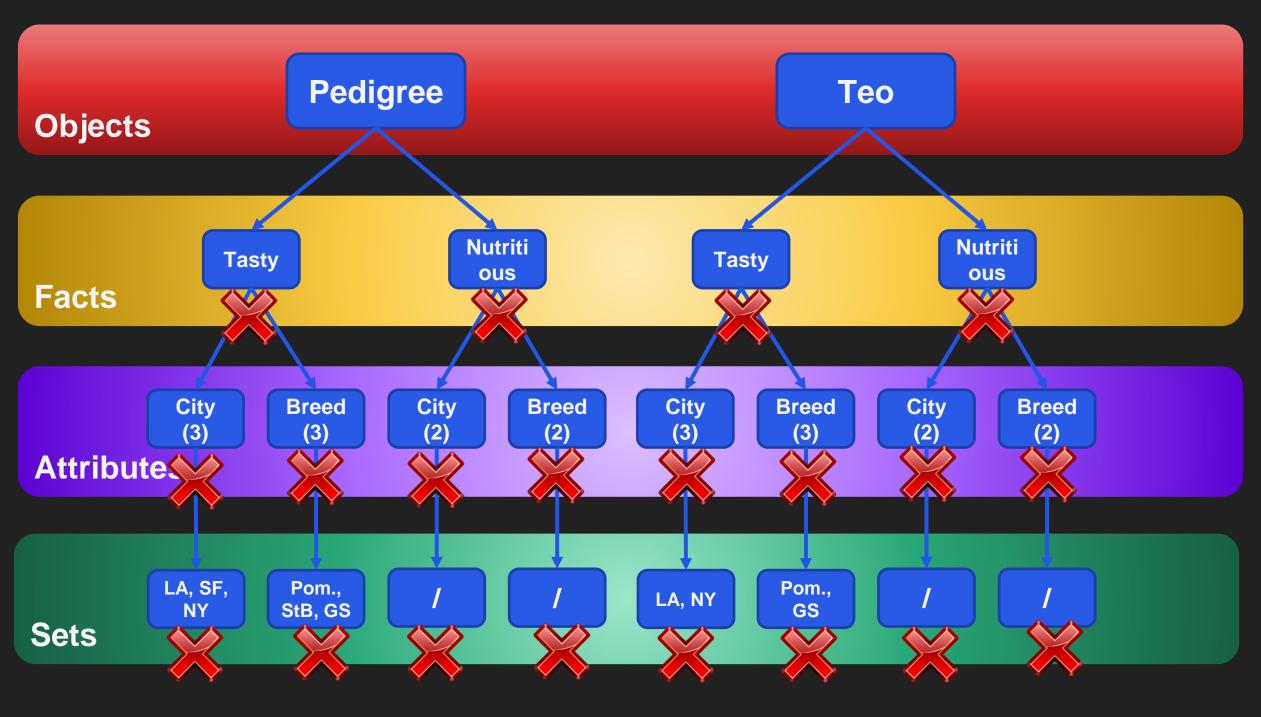




Fixed-Memory Learning

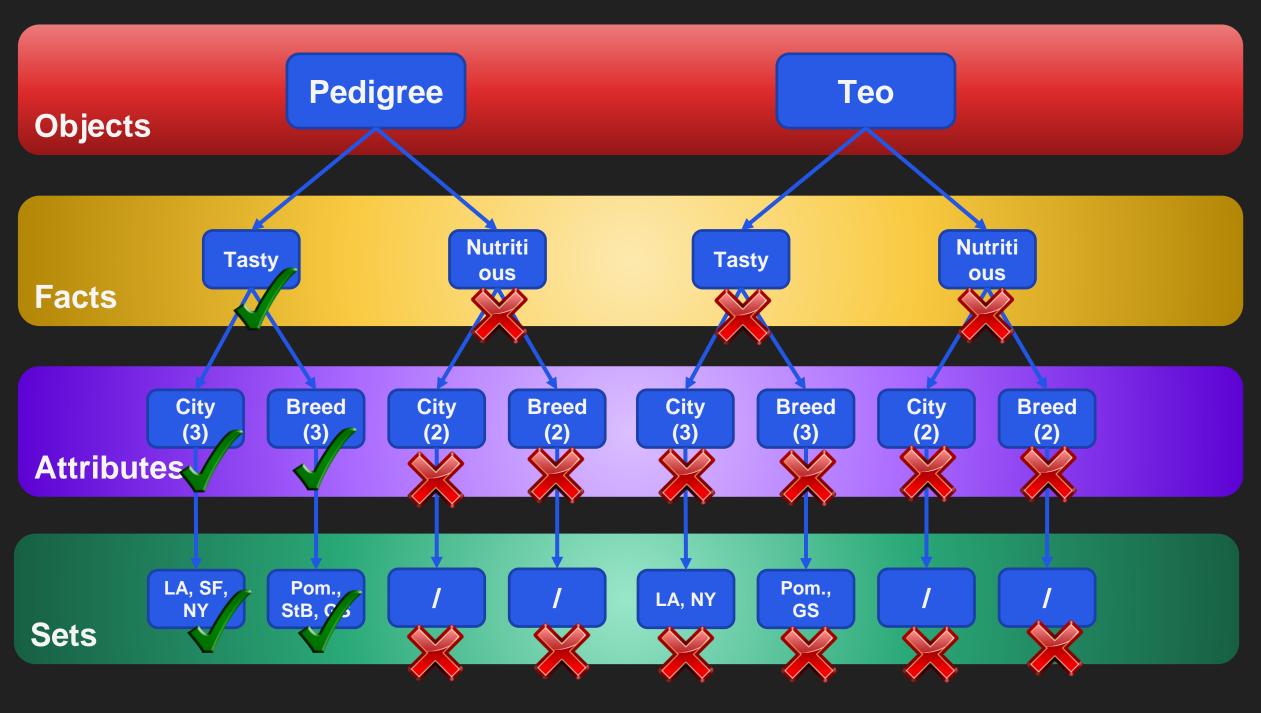


Fixed-Memory Learning



City	Dog Breed	Тео	Pedig.
New York	Pomeranian	Like	
New York	Pomeranian	Like	
Los Angeles	St Bernard		
San Francisco	Pomeranian		Like
New York	Pomeranian	Like	
Los Angeles	St Bernard		
Los Angeles	German Shepherd	Like	Like
San Francisco	Dog Breed		
Los Angeles	Pomeranian	Like	
San Francisco	German Shepherd		
New York	Pomeranian	Like	
San Francisco	St Bernard		
New York	St Bernard		
Los Angeles	German Shepherd	Like	
Los Angeles	Pomeranian	Like	Like
New York	Pomeranian		Like
New York	German Shepherd	Like	
Los Angeles	Pomeranian	Like	
New York	Pomeranian	Like	
New York	St Bernard		Like

Fixed-Memory Learning



City	Dog Breed	Тео	Pedig.
New York	Pomeranian	Like	
New York	Pomeranian	Like	
Los Angeles	St Bernard		
San Francisco	Pomeranian		Like
New York	Pomeranian	Like	
Los Angeles	St Bernard		
Los Angeles	German Shepherd	Like	Like
San Francisco	Dog Breed		
Los Angeles	Pomeranian	Like	
San Francisco	German Shepherd		
New York	Pomeranian	Like	
San Francisco	St Bernard		
New York	St Bernard		
Los Angeles	German Shepherd	Like	
Los Angeles	Pomeranian	Like	Like
New York	Pomeranian		Like
New York	German Shepherd	Like	
Los Angeles	Pomeranian	Like	
New York	Pomeranian	Like	
New York	St Bernard		Like

- Can learn:
 - Boolean facts Object X has property Y •
- Memory consumption:
 - Proportional to number of objects and • number of properties
 - Proportional to the thresholds •
 - But **independent** of the size of the data \bullet

- In Application/API Profile: Learn Flag FACT_X_SEEN \bullet Enforce Flag FACT_X_ALLOWED ullet

But is this enough? What can you express with Boolean facts?

Expressing Profiling Features with Boolean Facts

Objects (and Containers)

- Digital Locations (URL/endpoint)
- Hosts
- Methods
- Body Params
- QS Params
- Cookies
- ...

. . .

Expressing Profiling Features with Boolean Facts

Objects (and Containers)	SITE_
 Digital Locations (URL/endpoint) 	HOST
• Hosts	URL_
 Methods 	URL_
 Body Params 	URL_
QS Params	HOST
 Cookies 	•••

_HAS_HOST_X T_Y_HAS_URL_X Y_HAS_COOKIE_X Y_HAS_METHOD_X Y_METHOD_Z_HAS_QS_PARAM_X T_Y_HAS_COOKIE_X

Expressing Profiling Features with Boolean Facts

Objects (and Containers)		SITE
Digital Locations (URL/endpoint)		HOST
Hosts		URL_
Methods		URL_
Body Params		URL_
QS Params		HOST
Cookies		•••
•••	What about no rom profile? Date	

Types, Ranges, Char-Set, Regexp?

_HAS_HOST_X T_Y_HAS_URL_X Y_HAS_COOKIE_X Y_HAS_METHOD_X Y_METHOD_Z_HAS_QS_PARAM_X T_Y_HAS_COOKIE_X

Expressing Traffic Profile with Boolean Facts

Object Traffic Profile:

- Type
- Multiplicity range
- Optional?
- Mandatory?
- Param size range (for num)
- Param charset (for str)
- Param Length range (for str)

• ...

Expressing Traffic Profile with Boolean Facts

Object Traffic Profile:

- Type
- Multiplicity range
- **Optional?** •
- Mandatory?
- Param size range (for num)
- Param charset (for str) •
- Param Length range (for str) •

• • • •

Boolean param-type facts:

- NUM_TYPE_ALLOWED \bullet
- NON_NUM_TYPE_ALLOWED \bullet
- STR_TYPE_ALLOWED \bullet
- NON_STR_TYPE_ALLOWED \bullet
- NONE_TYPE_ALLOWED \bullet
- BOOL_TYPE_ALLOWED \bullet
- NON_BOOL_TYPE_ALLOWED \bullet
- MAIL_REGEXP_ALLOWED \bullet
- NON_MAIL_REGEXP_ALLOWED \bullet
- IP_ADD_REGEXP_ALLOWED
- NON_IP_ADD_REGEXP_ALLOWED \bullet

Expressing Traffic Profile with Boolean Facts

Object Traffic Profile:

- Type
- Multiplicity range
- Optional?
- Mandatory?
- Param size range (for num)
- Param charset (for str)
- Param Length range (for str)

•

Boolean param-type facts:

- NUM_TYPE_ALLOWED
- NON_NUM_TYPE_ALLOWED
- STR_TYPE_ALLOWED
- NON_STR_TYPE_ALLOWED
- NONE_TYPE_ALLOWED
- BOOL_TYPE_ALLOWED
- NON_BOOL_TYPE_ALLOWED
- MAIL_REGEXP_ALLOWED
- NON_MAIL_REGEXP_ALLOWED
- IP_ADD_REGEXP_ALLOWED
- NON_IP_ADD_REGEXP_ALLOWED

Boolean existence facts:

- MISSING_ALLOWED
- MULTI_OCCS_ALLOWED

Dealing with Sets and Ranges

Object Traffic Profile:

- Type
- Multiplicity range
- Optional?
- Mandatory?
- Param size range (for num)
- Param charset (for str)
- Param Length range (for str)

• ...

Dealing with Sets and Ranges

Object Traffic Profile:

- Type
- Multiplicity range
- Optional?
- Mandatory?
- Param size range (for num)
- Param charset (for str)
- Param Length range (for str)

• ...

Boolean charset facts

(one-hot-encoding):

- NON_LETTER_ALLOWED
- NON_DIGIT_ALLOWED
- NON_HEX_ALLOWED
- NON_B64_ALLOWED
- NON_UPPER_ALLOWED
- NON_LOWER_ALLOWED
- ASCII_21_ALLOWED
- ASCII_22_ALLOWED
- ASCII_23_ALLOWED
- ...
- ASCII_7E_ALLOWED

Dealing with Sets and Ranges

Object Traffic Profile:

- Type
- Multiplicity range
- Optional?
- Mandatory?
- Param size range (for num)
- Param charset (for str)
- Param Length range (for str)

• ...

Boolean charset facts

(one-hot-encoding):

- NON_LETTER_ALLOWED
- NON_DIGIT_ALLOWED
- NON_HEX_ALLOWED
- NON_B64_ALLOWED
- NON_UPPER_ALLOWED
- NON_LOWER_ALLOWED
- ASCII_21_ALLOWED
- ASCII_22_ALLOWED
- ASCII_23_ALLOWED
- •
- ASCII_7E_ALLOWED

Boolean range facts (discretization):

- LENGTH_GT_5_ALLOWED
- LENGTH_GT_50_ALLOWED
- LENGTH_GT_500_ALLOWED
- LENGTH_GT_5000_ALLOWED
- LENGTH_LT_10_ALLOWED
- SIZE_GT_10_ALLOWED
- SIZE_GT_100_ALLOWED
- SIZE_GT_1000_ALLOWED
- SIZE_GT_10000_ALLOWED
- •

• • •

Summary and Conclusions

- Data poisoning is a significant threat on learning mechanisms
- Threshold-based learning may provide an adequate robust learning solution
- The Boolean facts framework provides a streaming-friendly implementation for Threshold-based Learning
- Many features can be expressed with Boolean facts

Thank You!