55\' Dublln

Abusing Google Play Billing for fun and unlimited
credits!

Guillaume Lopes - @Guillaume_Lopes

RANDORI= = C

Agenda

1. Google Play Billing Presentation
2. Known Vulnerabilities
3. Vulnerable Applications

4.Conclusion

RANDORI: =

Google Play Billing Presentation
How does it works?

RANDORI: =

Google Play Billing Presentation

* Android framework that allows to easily monetize
applications with in-app purchases and subscriptions

e Subscriptions to magazines
* Premium features

* Extra content in games

RANDORI: =

Google Play Billing Presentation

* Payment is handled by Google

* Need to have Google Play in your device

* Credit card not exposed to the developers

* Products need to be defined in the Google Play Console

* Tracking made by Google

RANDORI: =

Google Play Billing Presentation

* Simplified Workflow

5. Content Delivery

2

1. Purchase Start
RANDORI: =

Google Play Billing Presentation

* Payment process handled by Google

¥ 3 9 0 0 547 m 200 o4 5 1546 4 39 0547

< Purchase

Yearly gas subscription.
dh

One-time deals

Gas (Trivial Drive Sample App)

-

Payment successful

Gas (Trivial Drive $0.99
Sample App) plus tax ®

Google Play
By tapping "Buy", you agree to the Terms of Service - Android (US).

G Pay

Premium (Trivial Drive Sample App) $0.99

E Premium

RANDORI: = 7

Google Play Billing Presentation

e Google returns a JSON object containing (not
exhaustive)

* purchaseState: Integer with 2 possible values O
(Purchased) or 1 (Canceled)

* purchaseToken: String generated by Google Play to
uniquely identify the transaction

* signature: String representing the signature of the
purchase

RANDORI: =

Google Play Billing Presentation

e Google Play signs the JSON string that contains the
response data for a purchase

* The Google Play Console generates an RSA key pair
for each application

* The private key is associated to the application used

RANDORI: =

Google Play Billing Presentation

* Google recommends to validate purchase details on a
server controlled by the developer

Y Notel It's highly recommended to verify purchase details using a secure backend server that you trust|When a server isn't an

option, you can perform less-secure validation within your app.

\
4

 However, it is still possible to verify the purchase on
the device by validating the signature

A Warning: This form of verification isn't truly secure because it requires you to bundle purchase verification logic within your

app. This logic becomes compromised if your app is reverse-engineered.

RANDORI: = 10

Google Play Billing Presentation

1
v
o
kB .
1N
B LA

) B ;
. O 2N)

RANDORI: =

Ny
bl b

11

Google Play Billing Presentation

d be implemented on

= ° = String TAG = "IABUtil/Security”;
° Irtvial vrive v
String A(= "RSA";

String il il ITHM = "SHAlwithRSA™;

 Sample app

* Example on how to
use the Google Play
Bi”ing API SERp ﬂ - (String : b1ic String s

I0Exception {
TextUtils.isEmpty(signedData) TextUtils.isEmpty(basefdPublicKey)
TextUtils.isEmpty(signature)) {
BillingHelper.logWarn(TAG, "Purchase verification failed: missing data.");

return false;

PublicKey key = generatePublicKey(basef4PublicKey);

return verify(key, signedData, signature);

RANDORI: = 12

Known Vulnherabilities
A little bit of history

RANDORI: =

Known Vulnerabilities

e 2013: Dominik Schiurmann found 2 vulnerabilities

allowing to bypass the payment

ODrocess

* Bug disclosed to Google (Hall of Fame)

1. A malicious app is able to impersonate the Google
Play billing service (com.android.vending)

 Define an Intent filter with a high priority

<intent-filter android:priority="2147483647" >

<action android:name="com.android.vending.billing.InfAppBillingService.BIND" />

</intent-filter>

RANDORI: =

14

Known Vulnerabilities

2. The signature verification returns true, if the
signature is an empty string

public static boolean wverifyPurchase(String base64PublicKey, String signedData, String signature) -

if (signedData == null) {
Log.e(TAG, "data is null™);
return false;

1
g

boolean verified = false;
ITextUtils.isEmpty(signature)) {
Publickey key = Security.generatePublicKey(baseb64PublicKey);

verified = Security.verify(key, signedData, signature);

if (lverified) {

Log.w(TAG, "signature does not match data.");

return false;

return true,

RANDORI: =

15

Known Vulnerabilities

* Dominik developed an app as PoC called BillingHack
* Just need to launch the app in background
* Then you can use your targeted app

A V4 9:23

BillingHack

This is a proof-of-concept implementation to attack Google's
in-app billing API

RANDORI: =

16

Known Vulnerabilities

* Google fixed these 2 vulnerabilities by applying the
following modifications

1. Every app using the Google Play Billing APl should
define which is the target package for the intent

Intent serviceIntent = new Intent("com.android.vending.billing.InAppBillingService.BIND");

serviceIntent.setPackage("com.android.vending™);

Source: Trivial Drive v2

RANDORI: =

17

Known Vulnerabilities

2. The function checking the signature was modified in
order to return true only if the signature is valid

public static boolean wverifyPurchase(5tring base64PublicKey, String signedData, String signature) |
if (TextUtils.isEmpty(signedData) TextUtils.isEmpty(base6dPublicKey)
TextUtils.isEmpty(signature)) {

Log.e(TAG, "Purchase verification failed: missing data.");

return false;

PublicKey key = Security.generatePublicKey(basebdPublicKey);

return Security.verify(key, signedData, signature);

Source: Trivial Drive v2

RANDORI:

18

Known Vulnerabilities

SO[CAN WE REMOVE
A CLIENT SIDE ISSUE

T
T
m«c

USING A ﬂlIENI SIDE FIX?

Y DA N, e

RANDORI: =

Known Vulnerabilities

* If your app is performing the verification process
locally, you can always circumvent the payment by

1. Binding the Intent service to an app you control

2. Modify the signature verification in order to return
always true

 The main “problem” is to find how the app is
performing the signature verification!

RANDORI: = 20

Known Vulnerabilities

* Hacking Steps

3. Modify the smali 4. Modify the smali
= 4 code to replace the e d code to replace the
package signature validation

2. Decompile the

1. Install Billing
%)
app with apktool

Hack

7. Install the newly
created app

5. Recompile the 6. Sign the app with

11
app with apktool 8. PROFIT!!

—>

jarsigner

RANDORI==C 21

Vulnerable Applications
How to obtain unlimited credits?

RANDORI: =

Vulnerable Applications

* Doodle Jump (com.lima.doodlejump)

* Platform game (“How high can you get?”)
* “Named Best of 2015 by Google Play editors”

* Buy different items, but you need candies!

23

Vulnerable Applications

* Very easy to modify in order to buy items for free!

* Replace “com.android.vending” by “org. b|II|nghack”

File View Navigation Tools Help

b 22 doodlejump.apk
b = Source code
» £ android
b £ com

| 4
| 4
| 4
| 4
| 4
| 4
| 4

t# adcolony.sdk

£ aerserv.sdk

t# android.vending.billing

t# applovin

flurry

t# google

t# limasky

b 1 billing

» @ Base6d

(@ Base64DecoderException
(© labBroadcastReceiver
3 labException
€ labHelper
b @ labAsyncInProgressException
» @ OnConsumeFinishedListener
» U OnC onkumeMul.t|F|n|~hedLlstener

jadx-gui - doodlejump.apk

e
IabHelper.this. mSub
IabHelper.this.mSubscriptionUpdateSupported = f lse;

}
}
TabHelper.this.mSetupDone = true;
if (onIabSetupFinishedListener != null) {
onIabSetupFinishedListener.onIabSetupFinished(new IabResult(s, "
}
} catch (RemoteException e) {
if (onIabSetupFinishedListener != null) {
onIabSetupFinishedListener.onIabSetupFinished(new IabResult(IabH

}

e.printStackTrace();

}
};

Intent i1ntent = new Intent ding.billin J 1ce.BIND");
intent.setPackage("com.androaid

List list = null;

try {

RANDI:IRI

24

Vulnerable Applications

* Smali code

dine 313
new-instance v1, Landroid/content/Intent;

const-string vO, "com.android.vending.billing.InAppBillingService.BIND"
invoke-direct {v1, v0}, Landroid/content/Intent;-><init>(Ljava/lang/String;)V

Jdine 314

invoke-virtual {v1, v0}, Landroid/content/Intent;->setPackage(Ljava/lang/String;)Landroid/content/Intent;

RANDORI==C 25

Vulnerable Applications

* Then, modify the “verifyPurchase” function to return true

ile View MNavigation Tools Help

24 doodlejump.apk
b [Source code
» £ android
b £ com

| 4
| 4
| 4
| 4
| 4
| 4
| 4

4

t# adcolony.sdk
£ aerserv.sdk
t# android.vending.billing
t# applovin
flurry
t# google
t# limasky
b 1 billing
» © Baseb4
» © Base64DecoderException
) labBroadcastReceiver
) labException
) labHelper
) labResult
) Inventory
) Purchase

» @ SkuDetails
bt doodlejumpandroid
t# moat.analytics.mobile.aer

jadx-gui - doodlejump.apk

© com.limasky.billing.labHelper ¢ | ® com.limasky.billing.Security ¢

g
import
import
import
import
import
import

public

e A
java.security.KeyFactory;

java rity.NoSuchAlgorithmException;
java rity.PublicKey;
java.securilty.Signature;

java rity.SignatureException;

java.security.spec.X509EncodedKeySpec;

class Security {

private static final String KEY_FACTORY_ALGORITHM = "RSA";
private static final String SIGNATURE_ALG
private static final string TAG = "IABUt1l,

public static boolean verifyPurchase(String str, String str2, String str3) {

}

if (!TextUtils.isEmpty(str2) && xtUtils.1sEmpty(str) ITextUtils.i1sEmpty(str3)) {
return verify(generatePubl

b
J

Log.e(TAG, "Purch verification failed:
return false;

public static PublicKey generatePublicKey(String str) {

try {

return KeyFactory.getInstance(KEY_FACTORY_ALGORITHM) .generatePublic(new X589Encoded
} catch (Throwable e) {

throw new Runtim ption(e);
} catch (Throwable e2)

RANDORI:

26

Vulnerable Applications

Jine 63
e Smali code KX

return vO

dine 62

:cond_1
invoke-static {p0}, Lcom/limasky/billing/Security;-
>generatePublicKey(Ljava/lang/String;)Ljava/security/PublicKey;

move-result-object vO

line 63

invoke-static {vO, p1, p2}, Lcom/limasky/billing/Security;-
>verify(Ljava/security/PublicKey;Ljava/lang/String;Ljava/lang/String;)Z

move-result vO

goto :goto_O
.end method

RANDORI==C

27

Vulnerable Applications

DEMO

RANDORI: =

Vulnerable Applications

* Snoopy Pop
(com.jamcity.snoopypop)

e Game similar to Bubble Witch
but with Snoopy

* You can buy coins and lives

RANDORI: = 29

Vulnerable Applications

e Unity library is used for the graphics
* But Unity also offers a Google Play Billing interface

 However Unity does not offer server-side validation

Point of validation

It is best practice to validate the receipt at the point where your application’s content is distributed.

e Local validation: For client-side content, where all content is contained in the application and is enabled once purchased, the validation should take place on the target
device, without the need to connect to a remote server. Unity IAP is designed to support local validation within your application. See Local validation below for more
information.

Remote validation: For server-side content, where content is downloaded once purchased, the validation should take place on the server before the content is
released. |Unity does not offer support for server-side validation;|however, third-party solutions are available, such as Nobuyori Takahashi's IAP project.

e Source: https://docs.unity3d.com/Manual/UnitylAPValidatingReceipts.html

RANDORI: = 30

https://docs.unity3d.com/Manual/UnityIAPValidatingReceipts.html

Vulnerable Applications

* Most of the Unity’s code is written in Mono .NET

* These DLLs are stored on /assets/bin/Data/Managed

|s assets/bin/Data/Managed/

Analytics.dll Assembly-CSharp-firstpass.dll Facebook.Unity.dll mscorlib.dll Stores.dll System.Xml.dll
UnityEngine.Analytics.dll UnityEngine.Purchasing.dll winrt.dll Apple.dll

Common.dll Facebook.Unity.10S.dll
UnityEngine.Ul.dll Assembly-CSharp.dll
System.dll Tizen.dll UnityEngine.Networking.dll

P31RestKit.dll System.Core.dll System.Xml.Ling.dll UnityEngine.dll
Facebook.Unity.Android.dll Mono.Security.dll
Validator.dll

* The most interesting one is Security.dll

* This DDL contains a function called “Validate” which verify the
signature of the purchase

RANDORI==C

31

Vulnerable Applications

GooglePlayValidatar

* With DnSpy, a .NET
decompiler

* |t’s trivial to obtain
and modify the .NET
code

* The “Validate”
function throws an
exception when the
signature is invalid

1

¥ I]

10
11
12
13
14

M D

using System;
using System.Collections.Generic;
using System.Text;

namespace UnityEngine.Purchasing.Security

'/ Token: ©x0200801A RID: 26

internal class GooglePlayValidator

i
'/ Token: ©x@68000E3 RID: 227 RVA: 0x00006ADG File Offset: 0x00084EDE
public GooglePlayValidator(byte[] rsaKey)
i

this.key = new RSAKey(rsaKey);
¥
[Token: BxB6BBEBE4 RID: 228 RVA: BxBBBOGAES File Offset: BxBOOB4EES
public GooglePlayReceipt Validate(string receipt, string signature)
i
I byte[] bytes = Encoding. .GetBytes(receipt);

RANDORI: =

byte[] signature2 = .FromBasef45tring(signature);
if (!this.key.Verify(bytes, signature2))
i
throw new InvalidSignatureException();
¥
Dictionary<string, object> dictionary = (Dictionary<string, cbject>
object obj;
dictionary.TryGetValue("orderId", out obj);
object obj2;
dictionary.TryGetValue("packageName", out obj2);
object obj3;

32

Vulnerable Applications

* Then, we just need to remove the code performing

the check

LT+ s I I & 3

1@
11
12
13
14

call
stloc.1
ldarg.@
ldf1ld
ldloc
ldloc.1
callvirt

wint3[] []5ystem. : :FromBase6dString(string)

class UnityEngine.Purchasing.Security.RSAKey UnityEngine.Purchasing.Security.GooglePlayValidator

instance bool UnityEngine.Purchasing.Security.RSAKey: :Verify(uint8[], uint8[])
17 () ldarg.l

public GooglePlayReceipt Validate(string receipt, string signature)
{
byte[] bytes
byte[] array

Encoding. .GetBytes(receipt);

.FromBaseb64String(signature);
Dictionary<string, object> dictionary = (Dictionary<string, object>)
object obj;

dictionary.TryGetValue("orderId", ocut obj);

object obj2;

dictionary.TryGetValue("packageName", out obj2);

i I S)

RANDORI: =

tikey

33

Vulnerable Applications

e At the end, we replace your modified DLL in the app
* Don’t forget to modify the setPackage

* Rebuild with apktool
* And PROFIT!

* DEMO

RANDORI: =

Vulnerable Applications

* Fruit Ninja (com.halfbrick.fruitninjafree)
 Famous game where you need to cut fruits (like a ninja!)

e More than 100 millions of downloads

s 123 ESKS

BEST: 1B9

4{%“ 7 FRUIT
\mmﬁn
Yy l’s M

RANDORI: =

35

Vulnerable Applications

e Java Native Interface (JNI)

* JNI allows to interact with native code (C/C++) from Java/Kotlin

* |n short, you can embedded a shared library and your app can
call functions from this library

* FruitNinja implements sensitive functions using JNI

 And mostly for InApp Billing functions

private static native void GotDisplayCostNative(String str, float f, String str2, String str3);

private static native void PurchaseResultNative(String str, boolean z, boolean z2, String str2, String str3);

private static native void UnsolicitedReceiptNative(String str, boolean z, String str2, String str3);

RANDORI: =

36

Vulnerable Applications

* Need to reverse engineer the shared library

kali# 1ls -1lh libmortargame.so

-rw-r--r-- 1 root root 24M sept. 14 00:23 libmortargame.so
kali# strings libmortargame.so| grep PurchaseResultNative
PurchaseResultNative

kali#

* Shared library coded in C++
* Time consuming!

 Difficult to rebuild a new shared library

RANDORI: =

37

Vulnerable Applications

* However, it seems that the signature validation is
ooorly made

* So it’s possible to bypass the payment

* DEMO

RANDORI: =

Conclusion
That’s it?

RANDORI: =

Conclusion

* Developers use different techniques to perform the
Google Play Billing payment

e Obfuscation
e Shared library
* Nothing!

* However, the signature validation is mainly
oerformed locally inside the app

RANDORI: =

Conclusion

* On 30 apps tested
* 15 apps were vulnerable (bypass payment)

* Only 4 apps used an external endpoint to perform
additional checks

* | contacted some editors, but | never got an answer

* The issues are still present

RANDORI: =

41

Conclusion

* Regarding other Billing libraries, Google is the only
one allowing local validation

 Amazon IAP (In-App Purchase) needs a server to retrieve the
content

e Samsung In-App Purchase uses a server to validate the
purchase

RANDORI: = 42

x CHECKMARX

Thanks for the support!

RANDORI: =

Questions?

RANDORI: =

References 1/3
* Google Play Billing documentation

® https://developer.android.com/google/play/billing/index.html

* Google Play Billing Best Practices

* https://developer.android.com/google/play/billing/billing best
practices.html

e Google Play In-App Billing Library Hacked

* https://www.schuermann.eu/2013/10/29/google-play-billing-
hacked.html

RANDORI: =

45

References 2/3

* Billing Hack Source Code
* https://github.com/dschuermann/billing-hack

* Google prevents vulnerable apps on the Play Store
* https://support.google.com/fags/answer/70542707?hl=en
e Amazon documentation

* https://developer.amazon.com/fr/docs/in-app-purchasing/iap-
rvs-for-android-apps.html

e Samsung documentation

* https://developer.samsung.com/iap#overview
RANDORI: =

46

References 3/3

* Get Freebies by Abusing the Android InApp Billing API

 https://www.checkmarx.com/blog/abusing-android-inapp-
billing-api/
* Abusing Android In-app Billing feature thanks to a misunderstood
Integration

 https://www.securingapps.com/blog/BsidesLisbon17 AbusingAndroid
InappBilling.pdf

RANDORI: = 47

